X-RHEA

X-RHEA

The Real Power of Simulation

 X-RHEA

X-RHEA wird von EnginSoft und Vection Technologies gemeinsam entwickelt.

X-RHEA (Extended Reality for Human Engineering Application) ist die immersive Lösung für die Visualisierung und Präsentation von CAE-Daten (Computer-Aided Engineering).

Das Ziel von X-RHEA ist es, die Präsentation von Studien und Simulationen zu verbessern, um Vergleichssitzungen zwischen multidisziplinären Teams zu beschleunigen und die technisch-kommerzielle Kommunikation zu vereinfachen.

X-RHEA ist eine hochmoderne Suite zur Visualisierung von Simulationsergebnissen aus dem Ingenieurwesen in erweiterter Realität. Diese Innovation verbindet Tradition mit moderner Technologie und stellt ein leistungsstarkes Werkzeug dar. X-RHEA revolutioniert die technisch-kommerzielle Kommunikation, indem es komplexe 2D-Berichte in immersive Erfahrungen im Industriellen Metaversum verwandelt und die Integration von Künstlicher Intelligenz ermöglicht.

   Verbessert die technisch-kommerzielle Kommunikation mit internen Stakeholdern und Kunden;

   Reduziert die Entwicklungszeiten und -kosten von Projekten;

   Ermöglicht eine Differenzierung von Wettbewerbern;

   Erhöht die Wahrscheinlichkeit, neue Projekte zu gewinnen;

   Verkürzt die Zeiten für die Akquisition von Aufträgen;

   Senkt die Logistikkosten für physische Produkt- und Projektpräsentationen durch die Schaffung von virtuellen Präsentationsräumen.

Ask the Expert

Fragen Sie den Experten

Stellen Sie unseren Experten jetzt Ihre technischen Fragen!!
Über dieses Formular treten Sie direkt mit einem EnginSoft Experten in Kontakt, der Ihnen eine zuverlässige Antwort auf Ihre Frage geben und eine passende Lösung empfehlen kann.

Fragen Sie den Experten Fordern Sie eine kostenlose Demo an

Einblicke

CASE STUDY

Development and optimization of crash brackets for ECE R29 regulation compliance

IVECO uses modeFRONTIER to simulate results to pass type-approval tests

This paper presents the main steps taken in the development phase of the IVECO cab suspension brackets to comply with the new ECE R29 crash regulation for Heavy Commercial Vehicles (HVC).

modefrontier optimization automotive

NEWSROOM

Bleiben Sie bezüglich unserer News, Analysen und Trends unserer Experten auf dem Laufenden.

Newsroom  

MEDIA CENTER

Scrollen sich durch unser Media Center und entdecken Sie alle Videos und Video-Tutorials.

Media Center  

training courses

ISO GPS / TOLERANCE ANALYSIS course catalogue

The training course on geometric product specification and tolerance analysis addresses the issues related to tolerance management and the approach known as "Dimensional Management", which defines the activities involved and their sequence for achieving the desired quality at the lowest possible cost. We offer a wide range of training courses – scheduled, on-demand and customized – designed to meet the varying needs of individuals and/or the company in which they work: SO-GPS, ASME-GD&T standards, Tolerance analysis and model-based definition, and Software technologies training.

cetol tolerances

Mehr dazu

CASE STUDY

Optimizing the Glass Clamping of a Pyrolytic Oven

An appreciable 30 to 40% decrease in stresses

The aim of this study was to find the best quality glass-clamping system, through parametric model optimization, for a new pyrolytic self-cleaning oven by Indesit.

modefrontier optimization consumer-goods appliances

CASE STUDY

Railway-vehicles crashes: A study on energy absorbers in offset conditions

This study by Hitachi Rail investigates how various designs of energy absorbers perform under offset collision conditions in railway vehicles. Using finite element simulations (240 in total), the research explores different absorber geometries—such as thin-walled multi-cell and bi-tubular structures—and analyses how factors like thickness, shape, and cross-sectional dimensions affect energy dissipation.

automotive rail-transport

CASE STUDY

The role of mechanical variation management in medical devices

A case study of drug delivery devices developed by Flex

The development of medical devices presents unique technical, regulatory, and economic challenges, requiring a multidisciplinary approach to ensure patient safety, reliability, and market competitiveness. Medical devices span a wide spectrum—from drug delivery systems to surgical robots—and must meet stringent functional, material, and regulatory requirements. A critical and often underestimated factor influencing their performance and manufacturability is mechanical variation, the inevitable deviation from nominal design that occurs during production.

biomechanics