Research Projects

SHINE PV

Sustainable, High-throughput, Industry-ready, Next-generation technology for European manufacturing leadership in photovoltaic

Sector

Manufacturing, Photonics

Product/Objective

The main objective of SHINE PV is to develop alternative technological routes to mainstream advanced photovoltaic (PV) production at lower costs and create opportunities for the differentiation of EU manufacturers (cells, modules, equipment and materials) to enhance their competitiveness on the global PV market.

The expectation of the project is to integrate SHINE PV process steps and enable an increase of solar cell efficiency of 0.5% absolute versus the reference process (as combination of efficiency increase from metallization, post processing and interconnection) with a simultaneous CoO reduction of 4% to 10%, depending on the different technologies adopted, due to reduced material costs and increased equipment productivity.

Project Summary

SHINE PV will develop alternative technological routes for two solar cell designs: Heterojunction (SHJ) and Tunnel Oxide Passivared Contact (TOPCon) solar cells, covering the three key steps in the back-end manufacturing: metallization, post-processing and interconnection. SHINE PV will identify synergies and differences between the two cell technologies, demonstrate different flows and down-select the most promising ones in terms of cost of ownership and high-volume manufacturing readiness.

The expectation of the project is to integrate SHINE PV process steps for metallization, post-processing and interconnection and enable an increase of SHJ/TOPCon solar cell efficiency of 0.5% absolute (module power increase of 2%) versus the reference process (screen printed metallization and MBB) with a total Cost of Ownership (CoO) reduction ranging from 4% to 10%, depending on technology choice, equipment productivity and materials costs.

SHINE PV project will demonstrate the integrated innovative processes and novel equipment both virtually and within physical pilots at industrial partners at TRL7.

Innovation

SHINE PV aims to:

  • Contribute towards establishing a solid European PV innovation and production base;
  • SHINE PV will establish and demonstrate complete back-end PV manufacturing lines;
  • Reinforce the sustainability of the European PV value chain building a secure, resilient, and diverse domestic energy sector industrial base.

ES Role

EnginSoft leads WP5: Process Integration, demonstration and evaluation, which scope is to create simulation models of the integrated SHJ and TOPCon process to provide realistic representations of the manufacturing process flows and to virtually optimise and validate their performance.

Manufacturing digital models will be developed and applied to demonstrate the manufacturing equipment and integrated production chains, including all the available processes and equipment alternatives and further exploring their scope.

Partners

APPLIED MATERIALS IRELAND – APPLIED MATERIAL ITALIA – COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES – FRAUNHOFER GESELLESCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHU – HIGHLINE TECHNOLOGY GMBH – INTERUNIVERSITAIR MICRO-ELECTRONICA CEMTRUM, ARKEMA FRANCE SA, POLYMER COMPETENCE CENTER LOBEN GMBH, IPTE AUTOMATION OU, SOLTECH, HOLOSOLIS SAS, UNIVERZA V LJUBLJANI, PI PHOTOVOLTAIK-INSTITUT BERLIN AG, NEDERLANDSE ORGANISATIE VOOR TOEGEPAST NATUURWETENSCHAPPELIJK O, AMIRES THE BUSINESS INNOVATION MANAGEMENT INSTITUTE ZU, BEDIMENSIONAL SPA

Funding Scheme

Funding Scheme Horizon Europe | Call identifier HORIZON-CL5-2024-D3-01-01, Grant Agreement No 101172902

SHINE PV

Project web site

Duration

48 months

Period

January 2025 – December 2028

Coordinator

APPLIED MATERIALS IRELAND

Reference in EnginSoft

Giovanni Paolo Borzi

Partners Number

17

Ask the Expert

Contact us!

Contact our R&D team for any information.

Ask for information

Find out more

Some of our competences in research and technology transfer

Research project

AGILE

Manifattura AGILE per la competitività e l’innovazione di prodotto

Il progetto sviluppa soluzioni e strumenti per la Manifattura Agile per la competitività e l’innovazione di prodotto affrontando quattro aree di sviluppo

Research project

PreMANI

MANIFATTURA PREDITTIVA: progettazione, sviluppo e implementazione di soluzioni di Digital Manufacturing per la previsione della Qualità e la Manutenzione Intelligente

Il progetto PreMANI ambisce a dimostrare la capacità di penetrazione di tali tecniche in settori applicativi eterogenei, caratterizzati da esigenze molto diverse, facendo leva sugli aspetti metodologici di natura generale.

Research project

OPTIMA

Optimizing Industrial Applications for Heterogeneous HPC systems

OPTIMA is an SME-led project that aims to harness and optimize several industrial applications and a set of open source libraries. These will be used in at least three different application domains on two new HPC systems populated with FPGA integrated circuits and using several innovative programming environments.