iPhysics

iPhysics

Digital engineering, simulation and augmented reality for machines, production lines design and plant logistics

iPhysics

ilPhysics is a product of Machineering Gmbh.

iPhysics is an innovative simulation platform for the digital design and virtual commissioning of complex production machines, lines and plants. By integrating the mechanical, electrical and software engineering it provides substantial benefits, such as the possibility to further optimize the machine sequence planning, immediately verify solutions and reduce costs.

iPhysics enables comprehensive engineering from the CAD level to the PLC and robots simulation. It provides the ability to realistically simulate lines and plants and obtain better Throughput and OEE estimates. It enhances communication between the mechanical and the automation design teams effectively reducing risk for complex plants and projects and simplifying commissioning. It provides the possibility to evaluate multiple design solutions and seamlessly explore new ideas and what-if scenarios. Furthermore, industrialPhysics integrates the Augmented Reality features that advance the production processes visualization allowing to effectively engage the design and sales teams with customers.

industrialPhysics

Main benefits

Request a free demo

  Reduce risk for complex plants / projects

  Evaluate multiple solutions / implement what-if analysis

  Simulate and visualize production processes

  Get realistic Throughput and OEE estimates

  Optimize machine sequence planning

  Simplify commissioning

  Increase modularization and improve change management

The future of automated machines development

Explore the Virtual Commissioning demos we created with iPhysics!

A collection of videos, which show some applications of this innovative platform for the design and simulation of machines, lines and production plants.

Visit the dedicated area
industrialPhysics
Ask the Expert

Ask the expert

Send your technical questions to our experts!
Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Ask the expert Request a free demo

Insights

CASE STUDY

Using CFD Analysis to predict the effect of Wind on a Tower Crane

CFD proves to offer a reliable working methodology for designers

This article proposes the use of computational fluid dynamics (CFD) to address these complexities.

ansys mechanics

NEWSROOM

Stay connected with us: news, analysis and trends from our experts.

Newsroom  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars.

Media Center  

CASE STUDY

Optimization of an automotive manufacturing system design taking into account regional requirements

Applying CAE to facilitate business CapEx decision making in the automotive manufacturing sector

In this case study, EnginSoft engineers explain how they used modeFRONTIER to assist Comau, a Fiat Chrysler subsidiary, to optimize their approach to the preliminary design of production systems for automotive manufacturing system RFQs.

automotive optimization rail-transport modefrontier SIMUL8 iphysics industry4

Find out more

CASE STUDY

Circuit Breakers

Multibody simulation is the best technology to analyze the dynamic behavior of safety circuit breakers

The premium software RecurDyn was used to simulate a Double Pole Single Throw Switch using three different modeling schemes. A comparison of the results provided useful information for the designers.

recurdyn mechanics multibody

CASE STUDY

New methodology to better understand fatigue life in complex components

First six months’ use demonstrates comprehensive usability for designers with open future development prospects

This technical article details the application of the methodology developed using ANSYS WorkBench

ansys mechanics maplesim

CASE STUDY

CFD Characterization of the Ventricular Assist Device HeartAssist 5® Through a Sliding Mesh Approach

Analysis to determine possible optimizations to enhance device safety and efficacy for long-term patient use

This technical article describes how high-end numerical Computational Fluid Dynamics (CFD) simulations were applied to mimic the realistic operating conditions of a Ventricular Assist Device (VADs) and analyze its hemodynamics in order to identify potential areas for optimization of the device’s performance, safety and efficacy.

ansys cfd biomechanics