ilPhysics is a product of Machineering Gmbh.
iPhysics is an innovative simulation platform for the digital design and virtual commissioning of complex production machines, lines and plants. By integrating the mechanical, electrical and software engineering it provides substantial benefits, such as the possibility to further optimize the machine sequence planning, immediately verify solutions and reduce costs.
iPhysics enables comprehensive engineering from the CAD level to the PLC and robots simulation. It provides the ability to realistically simulate lines and plants and obtain better Throughput and OEE estimates. It enhances communication between the mechanical and the automation design teams effectively reducing risk for complex plants and projects and simplifying commissioning. It provides the possibility to evaluate multiple design solutions and seamlessly explore new ideas and what-if scenarios. Furthermore, industrialPhysics integrates the Augmented Reality features that advance the production processes visualization allowing to effectively engage the design and sales teams with customers.
A collection of videos, which show some applications of this innovative platform for the design and simulation of machines, lines and production plants.
Visit the dedicated area
Send your technical questions to our experts!
Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a
proven solution.

CASE STUDY
Stranding and closing planetary machines are huge pieces of equipment designed to twist multiple heavy spools of strand at noticeable speed, to manufacture large section steel ropes.
recurdyn multibody mechanics

CASE STUDY
In this case study, EnginSoft engineers explain how they used modeFRONTIER to assist Comau, a Fiat Chrysler subsidiary, to optimize their approach to the preliminary design of production systems for automotive manufacturing system RFQs.
automotive optimization rail-transport modefrontier SIMUL8 iphysics industry4

CASE STUDY
Since this cannot be accurately measured in an implanted stent, manufacturers decided to use Multiphysics to simulate the process to better understand the method and to calculate the forces operating on the implant in order to improve the stent design and the surgical procedure, as described in this article.
cfd biomechanics ansys
CASE STUDY
Multibody simulation is integral to engineering, enabling precise analysis of structural loads and dynamic behaviours in complex systems. In the context of forklifts, where tyres play a critical role due to the absence of suspension systems, accurate tyre modelling is essential. This study develops and validates a hysteretic Bouc-Wen model for the radial dynamics of solid rubber tyres to enhance simulation reliability.
multibody recurdyn mechanics automotive

CASE STUDY
This case study describes ISEO’s project to introduce a global dimensional management approach based on CETOL6σ that starts from the product concept phase and includes design development and prototyping and extends on to cover all other phases of production through to the finished product, with the guidance and support of EnginSoft.
tolerances cetol mechanics