Multiscale.Sim | Multiscale analysis system

A new tool for ANSYS that facilitates materials testing and microscopic analysis of composite materials

The multiscale analysis technique is designed to overcome complex materials problems. Using this technique, all material constants can be evaluated without expensive experimental campaigns. Cybernet Systems Co. has developed a multiscale analysis CAE tool called the “Multiscale.Sim”. Multiscale.Sim has been embedded in the ANSYS Workbench GUI using the ANSYS Customization Toolkit (ACT) techniques, making it very easy to use and allowing it to offer leading high-performance productivity for ANSYS Workbench users. The Multiscale.Sim tool can help engineers to resolve challenges around materials modeling and characterization. Using the two functions of homogenization and localization analyses (Figure 1) makes it possible to perform a multiscale analysis of the inhomogeneous material microstructure of a composite material, such as fiber-reinforced plastic or metal, honeycomb, filler dispersion, lattice structures, and so on. Material property values are calculated by numerical material test of micro structure without material tests that were required conventionally. The results enable prediction of the macroscopic behaviour by the macro structural analysis. Further, it is possible to predict the microscopic behaviour by going back to the micro structure analysis again.

Multiscale.Sim is a product of Cybernet Systems Co.

Multiscale.Sim features overview
Multiscale.Sim | Convert the Power of New Materials into the Power of Development Estimate Material Properties for Added Value

Example of cells templates

Main Benefits

  Development of multiscale material models using homogenization and localization analyses

  Improves product performance and reduces product development time

  Development of numerical material testing

  Possibility to make parametric studies

  Development of new composite material structures

  Possibility to execute Linear and Non linear analyses (with different license versions)

  Built-in parametric unit cells (e.g. unidirectional, woven, chopped, etc.) Possibility to develop User-Defined unit cells

  Efficient and detailed multiscale tool, full integrated with ANSYS Multiphysics platform (ANSYS Workbench and ANSYS Mechanical APDL)

  Boost design process

  Improve product design

  Improve productivity and quality

  Reduce time to market

  Reduce real material testing cost and resources

Request a free demo

 

Product brochure

  Download the brochure

Ask the expert

Send your technical questions to our experts!

Ask an Expert connects you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Ask the expert

Insights

CASE STUDY

Advanced strategies for the flow field optimization of a medical device

How to use a hybrid method of CFD analysis for product optimization and performance improvement while reducing the computational effort and the time required to achieve the results

Further reduction of the heat loss compared to the best design of the NSGA-II first phase design optimization: a further 4% gained

cfd biomechanics ansys modefrontier optimization

Read More  

NEWSROOM

Stay connected with our news, analysis and trends from our experts

 

Read more  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

New approach for accurate, robust morphing of CAD geometries

Facilitates bi-di transfer between analysis-testmanufacture and design

This technical article describes a new, automated approach to accurately and robustly morph CAD geometry based on results of analysis in order to facilitate the missing bi-directional transfer of these geometries between analysis/test/manufacture and design. Two industrial examples using this approach are also provided, in the morphing of a turbine blade deformation model and aero-elastic deformation of aerodynamic shapes for the NASA Common Research Model.

aerospace

Read More  

Find out more

Our Expertise with Multiscale.Sim | Multiscale analysis system

CASE STUDY

Structural Analysis of the Planing Hull for the Permare Amer 116 Super Yacht

An efficient, fully integrated and optimized logic that consisted in the coupling of different software analysis tools

The main structure of the yacht is made of composite laminates with the presence of many composite reinforcements and bonded joints. We conducted a detailed structural analysis of the entire structure and verified the structural requirements.

marine optimization

Read More  

CASE STUDY

Optimization of an automotive manufacturing system design taking into account regional requirements

Applying CAE to facilitate business CapEx decision making in the automotive manufacturing sector

In this case study, EnginSoft engineers explain how they used modeFRONTIER to assist Comau, a Fiat Chrysler subsidiary, to optimize their approach to the preliminary design of production systems for automotive manufacturing system RFQs.

automotive optimization modefrontier rail-transport

Read More  

CASE STUDY

Development of a methodology and tools for tolerances in vehicle electrification to meet future customer demand and ensure competitive advantage

EnginSoft and Metasystem develop design validation, verification methodology for highperformance on-board chargers for electric vehicles

This article describes how EnginSoft supported Metasystem in acquiring the know-how to satisfy future customer requests on the one hand, and to create projects that are as profitable as possible in terms of waste minimization, on the other hand.

automotive tolerances cetol

Read More