Multiscale.Sim is a product of Cybernet Systems Co.
The multiscale analysis technique is designed to overcome complex materials problems. Using this technique, all material constants can be evaluated without expensive experimental campaigns. Cybernet Systems Co. has developed a multiscale analysis CAE tool called the “Multiscale.Sim”. Multiscale.Sim has been embedded in the Ansys Workbench GUI using the Ansys Customization Toolkit (ACT) techniques, making it very easy to use and allowing it to offer leading high-performance productivity for Ansys Workbench users. The Multiscale.Sim tool can help engineers to resolve challenges around materials modeling and characterization.
Using the two functions of homogenization and localization analyses makes it possible to perform a multiscale analysis of the inhomogeneous material microstructure of a composite material, such as fiber-reinforced plastic or metal, honeycomb, filler dispersion, lattice structures, and so on.
Material property values are calculated by numerical material test of micro structure without material tests that were required conventionally. The results enable prediction of the macroscopic behaviour by the macro structural analysis. Further, it is possible to predict the microscopic behaviour by going back to the micro structure analysis again.
Send your technical questions to our experts!
Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a
proven solution.

CASE STUDY
Improving efficiency while reducing cost is a very complex engineering challenge. Marelli Motori makes extensive use of CFD and FEM multiphysics simulation to do just that in the design of its electrical motors and generators.
ansys automotive cfd
CASE STUDY
This technical article discusses some of the problems of using finite element method (FEM) simulation software for composite material analysis and introduces new solutions from CYBERNET with Ansys Software for solving these problems.
composites ansys multiscale

CASE STUDY
This technical article describes how high-end numerical Computational Fluid Dynamics (CFD) simulations were applied to mimic the realistic operating conditions of a Ventricular Assist Device (VADs) and analyze its hemodynamics in order to identify potential areas for optimization of the device’s performance, safety and efficacy.
ansys cfd biomechanics

CASE STUDY
Sport equipment design is characterized by the fact that a fundamental part of a product success depends on the athlete’s feedback.
sports modefrontier ansys ls-dyna
CASE STUDY
Motorsport’s competitive demands drive innovation, such as optimizing fuel tank performance by reducing sloshing and ensuring efficient fuel extraction. This study explores a meshless CFD approach using Moving Particle Simulation (MPS) to streamline workflows and reduce computational costs compared to traditional finite volume method (FVM) CFD.
automotive cfd particleworks