Arena Simulation

Arena Simulation

Model and Analyze Every Aspect of Your Manufacturing Processes

Arena Simulation

Arena Simulation is a product of Rockwell Automation

Arena is a discrete event simulation and automation software: it enables manufacturing organizations to increase throughput, identify process bottlenecks, improve logistics and evaluate potential process changes.

Key Features

  • Modeling: Users can create simulation models by placing modules (representing different processes or logic) and connecting them with lines to define the flow of entities. Each module is designed to represent a specific element of the process.
  • Entity Representation: Each module performs specific actions related to entities, flow, and timing. The accuracy of the representation of modules and entities relative to real-world objects is determined by the modeler.
  • Statistical Data Collection: Arena enables the collection of key performance data, such as cycle times and work-in-process (WIP) levels, which can then be outputted as detailed reports for analysis.
  • Integration: Arena seamlessly integrates with Microsoft tools and other software applications, enabling users to enhance their simulations with additional data sources and applications.

Applications

  • Business Process Improvement: Arena simulation software helps businesses evaluate different alternatives and identify the most effective approach to optimizing performance, reducing risks, and understanding system dynamics based on critical metrics.
  • Manufacturing and Industrial Processes: Arena is widely used to model and simulate complex manufacturing and industrial processes. It allows users to predict outcomes, identify bottlenecks, and optimize system performance, ensuring smoother operations.
  • Education: Arena is also a key educational tool, teaching students the principles of discrete event simulation and process modeling in academic institutions.
Arena Simulation Arena Simulation

Main benefits

Request a free demo

  Find the Best Approach

Evaluate potential alternatives to determine the best approach to optimizing performance.

  Improve System Performance

Understand system performance based on key metrics such as costs, throughput, cycle times, equipment utilization and resource availability.

  Reduce Risk and Uncertainty

Reduce risk through rigorous simulation and testing of process changes before committing significant capital or resource expenditures.
Determine the impact of uncertainty and variability on system performance.

  Show your results

Visualize results with 2D and 3D animation

Ask the Expert

Ask the expert

Send your technical questions to our experts!
Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Ask the expert Request a free demo

Insights

CASE STUDY

The design optimization of a small axial turbine with millions of configurations

The case for computerized optimization over manual design interventions

In this article, we show that the main turbine characteristics, such as efficiency and exit flow angle, can be sufficiently improved using parametric optimization.

modefrontier energy optimization

NEWSROOM

Stay connected with us: news, analysis and trends from our experts.

Newsroom  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars.

Media Center  

CASE STUDY

Flexible factory design and reconfiguration using digital simulation models

The text discusses the importance of digital simulation models in modern factory design and reconfiguration, particularly in response to shorter product lifecycles and increased customization demands. Traditional design methods often lead to inefficiencies and high costs, making digital simulation essential for creating flexible and adaptable production systems. The article highlights a case study involving a furniture assembly factory, where a manufacturer needed to efficiently handle a variety of custom kitchen cabinet orders. The system integrator was tasked with designing a robotic assembly line that could maintain production efficiency despite the high variety of products.

industry4 SIMUL8

Find out more

CASE STUDY

Taking stock: the evolution of simulation around the world pre- and post-Covid-19

From its earliest days through to future post-pandemic perspectives

At this particular moment in time, this article wishes to reflect on the evolution of CAE and simulation in an effort to present a big-picture view when most of us are daily dealing with all the devil in the details in every aspect of our lives. We approached some long-standing business friends in engineering simulation from various regions around the world to help us in this task

ansys industry4 news

CASE STUDY

Smarter wheels: How multi-physics optimization is shaping the future of automotive design

A collaborative project between Nissan Technical Centre Europe, RBF Morph, and the University of Rome “Tor Vergata” showcases how multi-physics optimization is revolutionizing automotive wheel design, particularly for electric vehicles (EVs). By integrating styling, structural analysis, and aerodynamics within a unified workflow enabled by advanced mesh morphing technology (rbfCAE), designers can optimize wheels for lightweight, strength, and aerodynamic efficiency without compromising aesthetics.

automotive optimization

CASE STUDY

Optimization of the SLM/DMLS process to manufacture an aerodynamic Formula 1 part

This paper presents the RENAULT F1 Team’s AM process for an aerodynamic insert in titanium Ti6Al4V. Production was optimized by identifying the best orientation for the parts and the best positioning for the support structures in the melting chamber, in addition to using the ANSYS Additive Print module, a simulation software useful for predicting the distortion of a part and for developing a new, 3D, compensated model that guarantees the best “as-built” quality.

automotive additive-manufacturing optimization