True-Load

True-Load

Load Calculation Software for Product Engineering

True-Load

True-Load is a product of Wolf Star Technologies.

True-Load is a first to market to solution that leverages FEA models to place strain gauges on unmodified physical parts and then back calculate loading. Output directly feeds into True-QSE events, a powerful post processing tool that supports rapid virtual iteration. True-Load directly interfaces to FEA fatigue software to make FEA based fatigue with correlated loading events a natural part of the design cycle.

One of the most challenging tasks for an analyst is to develop load cases for their FEA model that match measured strain values. Typically, it will take weeks to develop the right load cases that match just one or two strain gauges at a single point in time.

True-Load makes that situation a thing of the past. True-Load will determine optimal gauge placement based on the FEA model. Once strains are collected at these optimal gauge locations, the strain data is read into True-Load to calculate load time histories that will typically match the measured strain to within 2% at every point in time. When combined with True-QSE, interrogating any point in the model for strain, stress or displacement is easy and interactive. Typically, it takes a few minutes to determine the strain gauge placement and a few minutes to back calculate the loading profiles.

True-Load - It is a first to market to solution that leverages FEA models to place strain gauges on unmodified physical parts and then back calculate loading.

Main benefits

Request a free demo

  Greatly reduces design cycle time

  Determine optimal strain gauge placement from FEA model

  Calculate Load Proportionality Matrices

  Use Measured Strains to back calculate Operating loads

  Create Quasi-Static Events to be used with True-QSE

Documentation

brochure

Product brochure

Read the brochure

true load

Do you know your Loads?

  Ideal for Industries with Complex Loading

  Turn Measured Strain Data into Meaningful Load Time Histories

  Get to Market Faster

  Calculate Loads within 2%

  Optimize Strain Gauge Placement

Ask the Expert

Ask the expert

Send your technical questions to our experts!
Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Ask the expert Request a free demo

Insights

CASE STUDY

Tolerances analysis on a nitrogen spring

EnginSoft models technical product modifications to enable Special Springs to satisfy a customer request at the minimum cost

Special Springs commissioned EnginSoft’s engineers to calculate the production cost repercussions of a technical product modification requested by an important customer.

eztol mechanics cetol tolerances

NEWSROOM

Stay connected with us: news, analysis and trends from our experts.

Newsroom  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars.

Media Center  

CASE STUDY

Optimizing the cable routing for a hyper-redundant inspection robot for harsh, hazardous environments

A multi-objective optimization framework to reduce the actuation loads and increase the payload

This article discusses a multi-objective optimization study to determine the optimal matrix for the routing of the actuating cable system in order to minimize the cable load on the robot and maximize the robot’s payload.

optimization modefrontier mechanics electronics

Find out more

CASE STUDY

Filling and compression analysis of metallic powders composed of spherical particles

The efficiency of material design can be greatly improved by using FEM-based virtual material testing analysis

This article presents an example of the analysis of a powder composed of spherical particles. Since powders have a very fine heterogeneous structure, a multi-scale approach based on homogenization analysis is proposed.

multiscale ansys mechanics

CASE STUDY

Using CFD Analysis to predict the effect of Wind on a Tower Crane

CFD proves to offer a reliable working methodology for designers

This article proposes the use of computational fluid dynamics (CFD) to address these complexities.

ansys mechanics

CASE STUDY

Creating an accurate digital twin of a human user for realistic modeling and simulation

Multibody system simulation using biomechanical human body models in RecurDyn

This technical article describes a human body model (HBM) wizard developed for RecurDyn and discusses what is already possible and what is in the development pipeline for the near future. Biomotion Solutions provides software to quickly build HBMs in industrial-grade simulation packages.

multibody recurdyn industry4 biomechanics