True-Load

Load Calculation Software for Product Engineering

True-Load is a first to market to solution that leverages FEA models to place strain gauges on unmodified physical parts and then back calculate loading. Output directly feeds into True-QSE events, a powerful post processing tool that supports rapid virtual iteration. True-Load directly interfaces to FEA fatigue software to make FEA based fatigue with correlated loading events a natural part of the design cycle.

One of the most challenging tasks for an analyst is to develop load cases for their FEA model that match measured strain values. Typically, it will take weeks to develop the right load cases that match just one or two strain gauges at a single point in time.

True-Load makes that situation a thing of the past. True-Load will determine optimal gauge placement based on the FEA model. Once strains are collected at these optimal gauge locations, the strain data is read into True-Load to calculate load time histories that will typically match the measured strain to within 2% at every point in time. When combined with True-QSE, interrogating any point in the model for strain, stress or displacement is easy and interactive. Typically, it takes a few minutes to determine the strain gauge placement and a few minutes to back calculate the loading profiles.

True-Load is a product of Wolf Star Technologies

True-Load
True-Load

It is a first to market to solution that leverages FEA models to place strain gauges on unmodified physical parts and then back calculate loading.

True-Load
True-Load

Main Benefits

  Greatly reduces design cycle time

  Determine optimal strain gauge placement from FEA model

  Calculate Load Proportionality Matrices

  Use Measured Strains to back calculate Operating loads

  Create Quasi-Static Events to be used with True-QSE


Request a free demo

Do you know your Loads?

  Ideal for Industries with Complex Loading

  Turn Measured Strain Data into Meaningful Load Time Histories

  Get to Market Faster

  Calculate Loads within 2%

  Optimize Strain Gauge Placement

Product brochure

  Read the brochure

Ask the expert

Send your technical questions to our experts!

Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Insights

CASE STUDY

Nautilus tech by Faber Spa: The new frontier for hoods ventilation

A Finite Element Method approach applied to product development for ventilation hoods

Faber Spa, which has designed and manufactured ventilation hoods for the past 50 years, holds a key global position both in terms of production and technology. It has achieved this position through strategic investments in research and development.

ansys appliances consumer-goods cfd

Read More  

NEWSROOM
Stay connected with our news, analysis and trends from our experts

 

Read more  

MEDIA CENTER
Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

Structural Optimization of the Drift Chamber at FermiLAB

A collaboration between EnginSoft and the Italian Institute of Nuclear Physics (I.N.F.N.)

The ultimate goal of the study was to optimize the Drift Chamber’s performance in terms of stiffness, strength and weight o be mounted on the Mu2e particle detector at FermiLAB in Chicago

construction civil-engineering modefrontier ansys optimization energy

Read More  

Find out more

Our Expertise in True-Load

CASE STUDY

Integrated Life Cycle Design for Buildings: Invest in Simulation to Increase Comfort and Environmental Sustainability at a Reasonable Cost

Sustainable building design

This article presents a business case for the use of simulation methods and technologies in the construction sector, particularly for decision-support in sustainable building design.

civil-engineering construction environmental

Read More  

CASE STUDY

FEA of a Reinforced Concrete Tunnel under Fire Conditions

Fire risk verification of tunnel sections of a railway tunnel located in Florence

n this study the concrete tunnel section is discretized using longitudinal and shear truss fibers, together with stiff coupling elements where a transient heat fire analysis takes place.

construction civil-engineering strauss rail-transport

Read More  

CASE STUDY

Nautilus tech by Faber Spa: The new frontier for hoods ventilation

A Finite Element Method approach applied to product development for ventilation hoods

Faber Spa, which has designed and manufactured ventilation hoods for the past 50 years, holds a key global position both in terms of production and technology. It has achieved this position through strategic investments in research and development.

ansys appliances consumer-goods cfd

Read More