True-Load

Load Calculation Software for Product Engineering

True-Load is a first to market to solution that leverages FEA models to place strain gauges on unmodified physical parts and then back calculate loading. Output directly feeds into True-QSE events, a powerful post processing tool that supports rapid virtual iteration. True-Load directly interfaces to FEA fatigue software to make FEA based fatigue with correlated loading events a natural part of the design cycle.

One of the most challenging tasks for an analyst is to develop load cases for their FEA model that match measured strain values. Typically, it will take weeks to develop the right load cases that match just one or two strain gauges at a single point in time.

True-Load makes that situation a thing of the past. True-Load will determine optimal gauge placement based on the FEA model. Once strains are collected at these optimal gauge locations, the strain data is read into True-Load to calculate load time histories that will typically match the measured strain to within 2% at every point in time. When combined with True-QSE, interrogating any point in the model for strain, stress or displacement is easy and interactive. Typically, it takes a few minutes to determine the strain gauge placement and a few minutes to back calculate the loading profiles.

True-Load is a product of Wolf Star Technologies

True-Load
True-Load

It is a first to market to solution that leverages FEA models to place strain gauges on unmodified physical parts and then back calculate loading.

True-Load
True-Load

Main Benefits

  Greatly reduces design cycle time

  Determine optimal strain gauge placement from FEA model

  Calculate Load Proportionality Matrices

  Use Measured Strains to back calculate Operating loads

  Create Quasi-Static Events to be used with True-QSE


Request a free demo

Do you know your Loads?

  Ideal for Industries with Complex Loading

  Turn Measured Strain Data into Meaningful Load Time Histories

  Get to Market Faster

  Calculate Loads within 2%

  Optimize Strain Gauge Placement

Product brochure

  Read the brochure

Ask the expert

Send your technical questions to our experts!

Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Insights

CASE STUDY

Lateral Buckling Analysis of a Cable-Stayed Arch

A brilliant example of how computer aided engineering can assist engineers to contrive an optimal solution to the problem of lateral buckling

The cable-stayed arch on one of the three bridges designed by Santiago Calatrava in Reggio Emilia: a brilliant example of an optimal solution

civil-engineering strauss construction

Read More  

NEWSROOM

Stay connected with our news, analysis and trends from our experts

 

Read more  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

Woodrail Road Barrier Impact Analysis

The Woodrail® road barrier is designed to improve vehicle safety blending in with the surrounding environment.

The barrier has been thoroughly tested and certified against car and bus impact conditions.

automotive ls-dyna

Read More  

Find out more

Our Expertise with True-Load

CASE STUDY

Johannesburg 2010 World Cup Stadium Roof and Facade Design

An ambitious remodeling and expansion plan for the stadium was initiated

The study analyzed these structures for strength, service and stability conditions before construction.

civil-engineering construction ansys

Read More  

CASE STUDY

Agricultural equipment suppliers use CAE to improve product performance, safety and desirability

CAE technologies also reduce design and testing times, and design costs

This case study describes how the company’s R&D team used ANYSYS and Spaceclaim to conduct Finite Element Method analyses to refine the design of a new model of a sprayer boom used by farmers to distribute phytosanitary products over fields for crop protection.

ansys automotive rail-transport

Read More  

CASE STUDY

Performance and Shape Optimization of the Campagnolo Tri-ProPad bike shorts pad

A new and revolutionary pad for bike shorts.

Sport equipment design is characterized by the fact that a fundamental part of a product success depends on the athlete’s feedback.

sports modefrontier ansys ls-dyna

Read More