True-Load

True-Load

Load Calculation Software for Product Engineering

True-Load

True-Load is a product of Wolf Star Technologies.

True-Load is a first to market to solution that leverages FEA models to place strain gauges on unmodified physical parts and then back calculate loading. Output directly feeds into True-QSE events, a powerful post processing tool that supports rapid virtual iteration. True-Load directly interfaces to FEA fatigue software to make FEA based fatigue with correlated loading events a natural part of the design cycle.

One of the most challenging tasks for an analyst is to develop load cases for their FEA model that match measured strain values. Typically, it will take weeks to develop the right load cases that match just one or two strain gauges at a single point in time.

True-Load makes that situation a thing of the past. True-Load will determine optimal gauge placement based on the FEA model. Once strains are collected at these optimal gauge locations, the strain data is read into True-Load to calculate load time histories that will typically match the measured strain to within 2% at every point in time. When combined with True-QSE, interrogating any point in the model for strain, stress or displacement is easy and interactive. Typically, it takes a few minutes to determine the strain gauge placement and a few minutes to back calculate the loading profiles.

True-Load - It is a first to market to solution that leverages FEA models to place strain gauges on unmodified physical parts and then back calculate loading.

Main benefits

Request a free demo

  Greatly reduces design cycle time

  Determine optimal strain gauge placement from FEA model

  Calculate Load Proportionality Matrices

  Use Measured Strains to back calculate Operating loads

  Create Quasi-Static Events to be used with True-QSE

Documentation

brochure

Product brochure

Read the brochure

true load

Do you know your Loads?

  Ideal for Industries with Complex Loading

  Turn Measured Strain Data into Meaningful Load Time Histories

  Get to Market Faster

  Calculate Loads within 2%

  Optimize Strain Gauge Placement

Ask the Expert

Ask the expert

Send your technical questions to our experts!
Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Ask the expert Request a free demo

Insights

CASE STUDY

A new heart valve replacement procedure modeled with multiphysics simulation could eliminate the need for open-heart surgery

24% operative mortality rate of open-heart surgery for older patients drives search for less-invasive aortic valve replacement technique

Since this cannot be accurately measured in an implanted stent, manufacturers decided to use Multiphysics to simulate the process to better understand the method and to calculate the forces operating on the implant in order to improve the stent design and the surgical procedure, as described in this article.

cfd biomechanics ansys

NEWSROOM

Stay connected with us: news, analysis and trends from our experts.

Newsroom  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars.

Media Center  

CASE STUDY

Interview with Diego Barone, R&D Project Leader at Vin Service

Interview with Diego Barone, R&D Project Leader at Vin Service

Vin Service, founded in 1976, is a world leader in dispenser technology and the first Italian manufacturer of draft-wine dispensers. Its core business is in the dispensing equipment industry and in cooling systems for beverages.

ansys mechanics food-beverage

Find out more

Our competences in True-Load

CASE STUDY

Durability and Buckling Analysis of Storage Tanks

Teknokon Machinery has developed its know-how in design and manufacturing of various types of storage tanks

By taking advantage of EnginSoft experience in Simulation Based Engineering, by means of the FEM analysis, the Durability, Structural Integrity and Buckling behavior of a new group of toxic liquid and fuel storage tanks have been investigated.

energy mechanics ansys

CASE STUDY

SACMI designs optimized next-generation components using automated surface sculpting

Uses Adjoint and BGM shape-modification approaches for mesh morphing

Mesh morphing has proven to be a valuable tool in parametrizing numerical models to perform shape optimization. It allows engineers to save time in generating new configurations for analysis because it does not require geometry modification and mesh re-generation.

ansys mechanics

CASE STUDY

Solving the chainsaw kickback problem with Maplesoft and ANSYS

Maximising chainsaw safety over the tool’s life by analysing the kickback problem and lifetime tool fatigue and performance

The avoidance or reduction of chainsaw kickback is a key safety feature for manufacturers. The challenges for engineers are to obtain more accurate analyses of the problem over the tool’s lifecycle.

maplesim maple mechanics ansys consumer-goods