True-Load

True-Load

Load Calculation Software for Product Engineering

True-Load

True-Load is a product of Wolf Star Technologies.

True-Load is a first to market to solution that leverages FEA models to place strain gauges on unmodified physical parts and then back calculate loading. Output directly feeds into True-QSE events, a powerful post processing tool that supports rapid virtual iteration. True-Load directly interfaces to FEA fatigue software to make FEA based fatigue with correlated loading events a natural part of the design cycle.

One of the most challenging tasks for an analyst is to develop load cases for their FEA model that match measured strain values. Typically, it will take weeks to develop the right load cases that match just one or two strain gauges at a single point in time.

True-Load makes that situation a thing of the past. True-Load will determine optimal gauge placement based on the FEA model. Once strains are collected at these optimal gauge locations, the strain data is read into True-Load to calculate load time histories that will typically match the measured strain to within 2% at every point in time. When combined with True-QSE, interrogating any point in the model for strain, stress or displacement is easy and interactive. Typically, it takes a few minutes to determine the strain gauge placement and a few minutes to back calculate the loading profiles.

True-Load - It is a first to market to solution that leverages FEA models to place strain gauges on unmodified physical parts and then back calculate loading.

Main benefits

Request a free demo

  Greatly reduces design cycle time

  Determine optimal strain gauge placement from FEA model

  Calculate Load Proportionality Matrices

  Use Measured Strains to back calculate Operating loads

  Create Quasi-Static Events to be used with True-QSE

Documentation

brochure

Product brochure

Read the brochure

true load

Do you know your Loads?

  Ideal for Industries with Complex Loading

  Turn Measured Strain Data into Meaningful Load Time Histories

  Get to Market Faster

  Calculate Loads within 2%

  Optimize Strain Gauge Placement

Ask the Expert

Ask the expert

Send your technical questions to our experts!
Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Ask the expert Request a free demo

Insights

CASE STUDY

New Ferry boat: Emax 2 circuit breaker tolerance analysis for maximum efficiency in panelbuilding

EnginSoft engineers help ABB optimize the Emax 2 design to allow ABB’s client IMESA to create a highly compact switchgear column for a state-of-the-art ferryboat

In this technical case study, we illustrate how EnginSoft engineers helped ABB to optimize the design of the Emax2 project.

cetol electronics mechanics tollerances eztol

NEWSROOM

Stay connected with us: news, analysis and trends from our experts.

Newsroom  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars.

Media Center  

CASE STUDY

Solving the chainsaw kickback problem with Maplesoft and ANSYS

Maximising chainsaw safety over the tool’s life by analysing the kickback problem and lifetime tool fatigue and performance

The avoidance or reduction of chainsaw kickback is a key safety feature for manufacturers. The challenges for engineers are to obtain more accurate analyses of the problem over the tool’s lifecycle.

maplesim maple mechanics ansys consumer-goods

Find out more

Our competences in True-Load

CASE STUDY

Solving the chainsaw kickback problem with Maplesoft and ANSYS

Maximising chainsaw safety over the tool’s life by analysing the kickback problem and lifetime tool fatigue and performance

The avoidance or reduction of chainsaw kickback is a key safety feature for manufacturers. The challenges for engineers are to obtain more accurate analyses of the problem over the tool’s lifecycle.

maplesim maple mechanics ansys consumer-goods

CASE STUDY

Filling and compression analysis of metallic powders composed of spherical particles

The efficiency of material design can be greatly improved by using FEM-based virtual material testing analysis

This article presents an example of the analysis of a powder composed of spherical particles. Since powders have a very fine heterogeneous structure, a multi-scale approach based on homogenization analysis is proposed.

multiscale ansys mechanics

CASE STUDY

How to optimize an external gear pump in highly constrained conditions

Meeting the engineering challenge of increasing efficiency while reducing costs

In this technical case study, EnginSoft assists Casappa to further refine an already-optimized standard series pump for an electrical motor and generator

mechanics optimization modefrontier