True-Load

Load Calculation Software for Product Engineering

True-Load is a first to market to solution that leverages FEA models to place strain gauges on unmodified physical parts and then back calculate loading. Output directly feeds into True-QSE events, a powerful post processing tool that supports rapid virtual iteration. True-Load directly interfaces to FEA fatigue software to make FEA based fatigue with correlated loading events a natural part of the design cycle.

One of the most challenging tasks for an analyst is to develop load cases for their FEA model that match measured strain values. Typically, it will take weeks to develop the right load cases that match just one or two strain gauges at a single point in time.

True-Load makes that situation a thing of the past. True-Load will determine optimal gauge placement based on the FEA model. Once strains are collected at these optimal gauge locations, the strain data is read into True-Load to calculate load time histories that will typically match the measured strain to within 2% at every point in time. When combined with True-QSE, interrogating any point in the model for strain, stress or displacement is easy and interactive. Typically, it takes a few minutes to determine the strain gauge placement and a few minutes to back calculate the loading profiles.

True-Load is a product of Wolf Star Technologies

True-Load

It is a first to market to solution that leverages FEA models to place strain gauges on unmodified physical parts and then back calculate loading.

True-Load

Main Benefits

  Greatly reduces design cycle time

  Determine optimal strain gauge placement from FEA model

  Calculate Load Proportionality Matrices

  Use Measured Strains to back calculate Operating loads

  Create Quasi-Static Events to be used with True-QSE

 

Request a free demo

Product brochure

  Read the brochure

Send your technical questions to our experts!

Ask an Expert connects you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Ask the expert

Insights

CASE STUDY

Engine Dynamics

A four-stroke engine was analyzed in depth by means of a detailed Multibody Dynamics (MBD) simulation

This type of highly-defined model provides valuable outputs: the contact analysis provides detailed information about the pressure and friction between the parts, which is useful for estimating wear

automotive multibody recurdyn

Read More  

NEWSROOM

Stay connected with our news, analysis and trends from our experts

 

Read more  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

Trapped-vortex approach for syngas combustion in gas turbines

3D Computational Fluid Dynamics analysis reveals ideal placement for the inlets to create the energetic vortex

This technical article presents a study to design a device that operates entirely on the principle of trapped vortices that intrinsically improve the mixing of hot combustion gases with fresh mixture, a characteristic that is essential both to diluted combustion and to Moderate or Intense Low-oxygen Dilution (MILD) combustion.

ansys cfd turbomachinery energy oil-gas

Read More  

Find out more

Our Expertise with True-Load

CASE STUDY

Cost Effective High- Performance Design: Innovation is the Answer

Marelli Motori applies multiphysics simulation to cost-effectively design better, more reliable motors and generators faster

Improving efficiency while reducing cost is a very complex engineering challenge. Marelli Motori makes extensive use of CFD and FEM multiphysics simulation to do just that in the design of its electrical motors and generators.

ansys automotive cfd

Read More  

CASE STUDY

New methodology to better understand fatigue life in complex components

First six months’ use demonstrates comprehensive usability for designers with open future development prospects

This technical article details the application of the methodology developed using ANSYS WorkBench

ansys mechanics maplesim

Read More  

CASE STUDY

The use of virtual prototyping tools in the design of Generation IV Nuclear Energy Systems

Interview with Fabrizio Magugliani, Sr. Engineer, Aero/Thermo Analytical Design, Ansaldo Nucleare SpA

Two main reasons have been the drivers for introducing and using CAE simulation technologies and mathematical modeling: safety and achieving optimal design.

ansys energy

Read More