FEMFAT (Finite Element Method Fatigue)

The globally leading software for finite element based fatigue life prediction

Innovative lightweight design is the key to reducing consumption and pollutant emissions. Especially the paradigm shift currently underway towards more electrification demands new possibilities for saving weight to be explored. A conflict in objectives results here due to the fatigue requirements that are targeted. FEMFAT is a progressive software solution for dealing with the associated challenges.

FEMFAT is a universally applicable software program for the fatigue analysis of statically and/or dynamically loaded components and complete systems. Based on stresses from finite element analysis, FEMFAT delivers analysis results such as fatigue life or damage as well as safety factors. This enables the identification of lightweight design potentials as well as potential weak spots already at an early product development phase.

The methods used are a combination of classical nominal-stress or stress-strain concepts and calculation standards such as TGL and FKM as well as methods that have been developed at Engineering Center Steyr GmbH & Co KG (“ECS”). These include the support effect concept by means of relative stress gradients and mean stress influence in combination with the critical cutting plane method as well as new methods for the determination of equivalent stresses.

FEMFAT is a product of Magna

FEMFAT

FEMFAT is a universally applicable software program for the fatigue analysis

FEMFAT

FEMFAT is a universally applicable software program for the fatigue analysis

Main Benefits

  Reliable fatigue software for determining damage, fatigue life and safety factors

  Employed successfully for decades at ECS and validated through test results

  Software for engineers from engineers

  Analysis options for metallic and non-metallic components

  Simultaneous analysis of base material and weld and/or spot joints

  Material database with more than 400 data sets as well as a material generator for the creation of new material cards

  Numerous interfaces ensure easy integration into your CAE process

  A modular design allows a tailored solution for your particular set of challenges

 

Ask the expert

Send your technical questions to our experts!

Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Insights

CASE STUDY

Development of a methodology and tools for tolerances in vehicle electrification to meet future customer demand and ensure competitive advantage

EnginSoft and Metasystem develop design validation, verification methodology for highperformance on-board chargers for electric vehicles

This article describes how EnginSoft supported Metasystem in acquiring the know-how to satisfy future customer requests on the one hand, and to create projects that are as profitable as possible in terms of waste minimization, on the other hand.

automotive tolerances cetol

Read More  

NEWSROOM
Stay connected with our news, analysis and trends from our experts

 

Read more  

MEDIA CENTER
Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

Using multidisciplinary optimization for engine suspension stiffness

Optimizing idling and ride comfort

In this technical article, Fiat Chrysler Automobiles explain how they created a multibody optimization project to identify the optimal values for the powertrain suspension stiffness for a three-cylinder engine in order to minimize the vibrations at idle condition and ensuring greater ride comfort to the passengers.

automotive optimization modefrontier

Read More  

Find out more

Our Expertise in FEMFAT (Finite Element Method Fatigue)

CASE STUDY

Cost Effective High- Performance Design: Innovation is the Answer

Marelli Motori applies multiphysics simulation to cost-effectively design better, more reliable motors and generators faster

Improving efficiency while reducing cost is a very complex engineering challenge. Marelli Motori makes extensive use of CFD and FEM multiphysics simulation to do just that in the design of its electrical motors and generators.

ansys automotive cfd

Read More  

CASE STUDY

Excavators

The influence of flexibility was considered with the use of both the Reduced Flex and the Full Flex options in RecurDyn

A multibody model of an excavator was developed to calculate the loads acting on the structure and to perform static structural verifications of the different components.

automotive multibody recurdyn mechanics

Read More  

CASE STUDY

Forklift Dynamics

The forklift’s wheels were represented in detail to implement a sophisticated model of the tire features

A client wanted to evaluate the dynamic performance of a new-concept forklift, so a fully-functional multibody model of the forklift was built by assembling the client’s CAD geometries.

recurdyn multibody automotive mechanics

Read More