FEMFAT is a product of Magna.
Innovative lightweight design is the key to reducing consumption and pollutant emissions. Especially the paradigm shift currently underway towards more electrification demands new possibilities for saving weight to be explored. A conflict in objectives results here due to the fatigue requirements that are targeted. FEMFAT is a progressive software solution for dealing with the associated challenges.
FEMFAT is a universally applicable software program for the fatigue analysis of statically and/or dynamically loaded components and complete systems. Based on stresses from finite element analysis, FEMFAT delivers analysis results such as fatigue life or damage as well as safety factors. This enables the identification of lightweight design potentials as well as potential weak spots already at an early product development phase.
The methods used are a combination of classical nominal-stress or stress-strain concepts and calculation standards such as TGL and FKM as well as methods that have been developed at Engineering Center Steyr GmbH & Co KG (“ECS”). These include the support effect concept by means of relative stress gradients and mean stress influence in combination with the critical cutting plane method as well as new methods for the determination of equivalent stresses.
Send your technical questions to our experts!
Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a
proven solution.
CASE STUDY
In this article, Del Negro explains how Ricardo is developing solutions to support its customers to predict the lifecycle of motorcycle components, using finite element analysis (FEA) and fatigue analysis.
femfat mechanics automotive
CASE STUDY
In this article, Del Negro explains how Ricardo is developing solutions to support its customers to predict the lifecycle of motorcycle components, using finite element analysis (FEA) and fatigue analysis.
femfat mechanics automotive
Our competences in FEMFAT (Finite Element Method Fatigue)
CASE STUDY
The article discusses advancements in low cycle fatigue analysis for an electric motor's rotor, focusing on a new method implemented in the FEMFAT software. Traditional methods have limitations in accurately predicting material plasticization due to a lack of consideration for the sequence of load peaks, which can affect component lifespan.
automotive femfat
CASE STUDY
This technical article presents a simulation process to analyze fatigue in electronic parts, particularly in solder joints, on printed circuit boards (PCBs).
femfat electronics automotive
CASE STUDY
In this article, Del Negro explains how Ricardo is developing solutions to support its customers to predict the lifecycle of motorcycle components, using finite element analysis (FEA) and fatigue analysis.
femfat mechanics automotive