oorja

oorja

Plateforme numérique innovante de développement et de modélisation de batteries, qui simule, prédit et optimise leur comportement

oorja

Oorja est un produit de oorja

Deux approches sont traditionnellement utilisées dans la conception d’une batterie.
Avec le premier, le comportement d'une batterie est simulé grâce à l'utilisation de technologies CAE (Computer Aided Engineering), qui permettent de représenter le produit à l'aide de modèles numériques axés sur la modélisation et l'analyse physique. Mais, pour une prédiction précise, il est nécessaire d’introduire une analyse multi-physique, c’est-à-dire d’introduire des paramètres supplémentaires, électrophysiques caractéristiques des batteries par exemple, qui rendent le modèle physique réel plus complexe. À cela, il faut ajouter l'augmentation de la complexité des produits, déterminée par l'émergence de nouvelles technologies et de nouveaux matériaux, et par l'attention portée à la durabilité environnementale. Et c'est cette complexité qui a fait ressortir les limites de l'adoption de cette approche : des temps de calcul croissants, aux compétences étendues requises (sur les logiciels à utiliser, sur les types d'analyses à réaliser, sur les caractéristiques et comportements des nouveaux matériaux, pour ne citer que les principaux).

La seconde approche, plus récente, est plutôt liée aux modèles d’apprentissage automatique (Machine Learning). Dans ce cas, des ensembles de données sont utilisés pour concevoir une nouvelle batterie, composée d’un grand nombre de données collectées expérimentalement.
Mais quelle est la fiabilité de ces données lors de la conception d’un nouveau produit ? La conception et les performances d’une batterie dépendent de nombreux facteurs : la limite dans l’utilisation de cette approche est la disponibilité de données réellement utiles dès les premières phases de conception.

oorja s'inscrit dans ce scénario : la force de cette plateforme réside dans l'adoption d'une approche hybride, qui exploite les avantages des deux méthodologies décrites ci-dessus, et dépasse leurs limites.

oorja utilise une approche basée sur des modèles physiques simples et rapides, qui constitueront la base de l'algorithme d'apprentissage automatique, réduisant ainsi le nombre de données nécessaires pour l'ensemble de données initial.

oorja simule, prédit et optimise le comportement des batteries, en analysant différentes performances, comme par exemple la quantité de courant produite, le « fondu capacité/puissance », la surchauffe pendant l'utilisation, les protocoles de charge rapide et les aspects liés à la garantie.

A la base de la méthodologie il y a un workflow composé de 7 modules :

  • Matériau : pour définir le matériau
  • Données : pour utiliser le Machine Learning
  • Design : pour créer ou importer la "géométrie du pack" pour optimiser
  • Autonomie : pour prédire les performances liées au courant de la batterie
  • Volt : pour optimiser les performances (ex. BoL : performance Begin of Life)
  • Fade : pour l'analyse des risques, analyser les aspects liés à la garantie, analyser le « fade capacité/puissance »
  • Chaleur : analyse thermique, optimisation de la conception pour définir les distances entre cellules ou refroidissement

Pour souligner l'interface graphique extrêmement "user friendly" d'oorja, qui rend extrêmement simple l'utilisation de la méthodologie complexe : elle est basée sur l'utilisation d'un "wizard", c'est-à-dire un système automatique, qui guide l'utilisateur étape par étape dans le workflow génération.

Redefining Product Features - Keeping your eye on the ball while performing a deep dive on the start-up mentality to derive convergence on cross-platform integration. RANGE - Predict vehicle performance and range at the get go. Estimate the impact of real life driving conditions, road conditions and temperature on vehicle range over the life of the vehicle.

  Vitesse de calcul - simulations plus rapides que les "solutions basées sur la physique" classiques

  Petits ensembles de données - moins de données que celles requises par les approches purement "Machine Learning"

  Facilité d'utilisation et interface guidée

  Optimisation des performances

  Optimisation du design des packs

  Identification du protocole « Charge rapide »

  Prévision de température

  Analyse « Capacité affaiblie »

Documentation

brochure

Product brochure

Download the oorja brochure

oorja

Fast Charging Algorithms - Safety - Thermal Stability - Degradation
Ask the Expert

Demandez à l'expert

Envoyez vos questions techniques à nos experts !
Mettez-vous en relation avec un expert EnginSoft qui pourra vous apporter une réponse fiable à votre question technique ou vous recommander une solution éprouvée.

Ask the expert Request a free demo

Connaissances

CASE STUDY

Ultra-Wide Band Radome CAE Optimization

Overcoming mechanical and electromagnetic challenges in refining a radome for electronic warfare

Elettronica SpA designs and produces systems for electronic warfare. Each system design is unique according to its platform and purpose. In this article, the company describes how it used CAE to approach the challenging design of a single sandwich radome.

ansys optimization electronics

NEWSROOM

Restez connecté avec nous : actualités, analyses et tendances de nos experts.

Newsroom  

MEDIA CENTER

Explorez nos archives pour voir des vidéos, des didacticiels vidéo et des enregistrements de nos webinaires.

Media Center  

training courses

LITHIUM BATTERIES course catalogue

Lithium-ion batteries, with their high energy density and long lifespan, are extensively used in a wide range of electronic devices, electric vehicles, and renewable energy storage systems. Explore our range of training courses on oorja, a SaaS platform based on Machine Learning algorithms to analyze and predict the behavior of cells and batteries. By utilizing a limited dataset, it delivers highly accurate and efficient forecasts.

training

En savoir plus

CASE STUDY

A perspective on simulation in the automotive industry

Face to face with Paul Stewart, design process leader and consultant

Futurities interviewed Paul Stewart about his thoughts on the evolution of simulation’s role in the design process in the automotive industry, the evolving roles of CAD and CAE and the move to freeform deformation in automotive design, as well as the likely impact and role of artificial intelligence technologies in this space.

automotive

CASE STUDY

Enhanced low cycle fatigue analysis and the influence of load sequence for an e-motor’s rotor

The article discusses advancements in low cycle fatigue analysis for an electric motor's rotor, focusing on a new method implemented in the FEMFAT software. Traditional methods have limitations in accurately predicting material plasticization due to a lack of consideration for the sequence of load peaks, which can affect component lifespan.

automotive femfat

CASE STUDY

The design optimization of a small axial turbine with millions of configurations

The case for computerized optimization over manual design interventions

In this article, we show that the main turbine characteristics, such as efficiency and exit flow angle, can be sufficiently improved using parametric optimization.

modefrontier energy optimization