Oorja est un produit de oorja
Deux approches sont traditionnellement utilisées dans la conception d’une batterie.
Avec le premier, le comportement d'une batterie est simulé grâce à l'utilisation de technologies CAE (Computer Aided Engineering), qui permettent de représenter le produit à l'aide de modèles numériques axés sur la modélisation et l'analyse physique. Mais, pour une prédiction précise, il est nécessaire d’introduire une analyse multi-physique, c’est-à-dire d’introduire des paramètres supplémentaires, électrophysiques caractéristiques des batteries par exemple, qui rendent le modèle physique réel plus complexe. À cela, il faut ajouter l'augmentation de la complexité des produits, déterminée par l'émergence de nouvelles technologies et de nouveaux matériaux, et par l'attention portée à la durabilité environnementale. Et c'est cette complexité qui a fait ressortir les limites de l'adoption de cette approche : des temps de calcul croissants, aux compétences étendues requises (sur les logiciels à utiliser, sur les types d'analyses à réaliser, sur les caractéristiques et comportements des nouveaux matériaux, pour ne citer que les principaux).
La seconde approche, plus récente, est plutôt liée aux modèles d’apprentissage automatique (Machine Learning). Dans ce cas, des ensembles de données sont utilisés pour concevoir une nouvelle batterie, composée d’un grand nombre de données collectées expérimentalement.
Mais quelle est la fiabilité de ces données lors de la conception d’un nouveau produit ? La conception et les performances d’une batterie dépendent de nombreux facteurs : la limite dans l’utilisation de cette approche est la disponibilité de données réellement utiles dès les premières phases de conception.
oorja s'inscrit dans ce scénario : la force de cette plateforme réside dans l'adoption d'une approche hybride, qui exploite les avantages des deux méthodologies décrites ci-dessus, et dépasse leurs limites.
oorja utilise une approche basée sur des modèles physiques simples et rapides, qui constitueront la base de l'algorithme d'apprentissage automatique, réduisant ainsi le nombre de données nécessaires pour l'ensemble de données initial.
oorja simule, prédit et optimise le comportement des batteries, en analysant différentes performances, comme par exemple la quantité de courant produite, le « fondu capacité/puissance », la surchauffe pendant l'utilisation, les protocoles de charge rapide et les aspects liés à la garantie.
A la base de la méthodologie il y a un workflow composé de 7 modules :
Pour souligner l'interface graphique extrêmement "user friendly" d'oorja, qui rend extrêmement simple l'utilisation de la méthodologie complexe : elle est basée sur l'utilisation d'un "wizard", c'est-à-dire un système automatique, qui guide l'utilisateur étape par étape dans le workflow génération.
Envoyez vos questions techniques à nos experts !
Mettez-vous en relation avec un expert EnginSoft qui pourra vous apporter une réponse fiable à votre question technique ou vous recommander une solution éprouvée.

CASE STUDY
A multibody model of an excavator was developed to calculate the loads acting on the structure and to perform static structural verifications of the different components.
automotive multibody recurdyn mechanics

training courses
Lithium-ion batteries, with their high energy density and long lifespan, are extensively used in a wide range of electronic devices, electric vehicles, and renewable energy storage systems. Explore our range of training courses on oorja, a SaaS platform based on Machine Learning algorithms to analyze and predict the behavior of cells and batteries. By utilizing a limited dataset, it delivers highly accurate and efficient forecasts.
training
CASE STUDY
The growth of technology and end-user expectations is ever more important in many application areas and medical devices are at the forefront of this innovation process.
ansys electronics
CASE STUDY
The article discusses advancements in all-solid-state batteries (ASSBs) as safe energy storage solutions, highlighting the challenges in achieving high ion conductivity compared to conventional lithium-ion batteries (LIBs). While ASSBs offer safety and high energy density, issues such as internal resistance and low ionic conductivity hinder their performance.
energy multiscale
CASE STUDY
In this technical article, a CFD study of various designs for four different specialty tractors: two brands of specialty tractors for vineyard configurations, and two brands of specialty tractors for orchard configurations, are described.
automotive ansys cfd