Oorja è un prodotto di Oorja
Nella progettazione di una batteria si utilizzano, tradizionalmente, due approcci. Con il primo si simulano i comportamenti di una batteria tramite l'utilizzo di tecnologie CAE (Computer Aided Engineering), che consentono di rappresentare il prodotto utilizzando modelli numerici incentrati sulla modellizzazione e le analisi della fisica. Ma, per una predizione accurata, è necessario introdurre analisi multi fisiche (Multiphysics Analysis), ossia introdurre ulteriori parametri, quelli elettrofisici caratteristici delle batterie ad esempio, che rendono più complesso il modello fisico vero e proprio. A questo si deve aggiungere l’aumento della complessità dei prodotti, determinato dall'introduzione di nuove tecnologie e di nuovi materiali, e dall’attenzione alla sostenibilità ambientale. Ed è questa complessità che ha fatto emergere i limiti nell’adottare questo approccio: dai tempi di calcolo che aumentano, alle estese competenze che sono richieste (sui software da utilizzare, sulle tipologie di analisi da effettuare, sulle caratteristiche ed i comportamenti dei nuovi materiali, per citare le principali).
Il secondo approccio, più recente, è invece legato ai modelli di apprendimento automatico (Machine Learning). In questo caso per la progettazione di una nuova batteria si utilizzano dataset, composti da un gran numero di dati raccolti sperimentalmente.
Ma quanto sono affidabili questi dati nel momento in cui si progetta un nuovo prodotto? Il design e le prestazioni di una batteria dipendono da moltissimi fattori: il limite nell'utilizzare questo approccio è la reperibilità dei dati che effettivamente sono utili nelle prime fasi di progettazione.
In questo scenario si inserisce oorja: la forza di questa piattaforma consiste nell'adozione di un approccio ibrido, che sfrutta i vantaggi delle due metodologie sopra descritte, e ne supera i limiti.
oorja utilizza un approccio basato su modelli fisici semplici e veloci, che costituiranno la base per l'algoritmo di apprendimento automatico, riducendo così il numero di dati necessari per il dataset iniziale.
oorja simula, predice ed ottimizza il comportamento delle batterie, analizzando diverse performance, come, ad esempio, la quantità di corrente prodotta, il “capacity/power fade”, il surriscaldamento durante l’utilizzo, i protocolli di ricarica rapida e gli aspetti legati alla garanzia.
Alla base della metodologia c’è un workflow composto da 9 moduli:
Da sottolineare l'interfaccia grafica estremamente "user friendly" di oorja, che rende estremamente semplice l'utilizzo della complessa metodologia: si basa sull'utilizzo di un "wizard", ossia di un sistema automatico, che passo dopo passo guida l'utente nella generazione del workflow.
Invia le tue domande ai nostri tecnici specializzati!
Mettiti in contatto con uno dei nostri esperti, che ti potrà fornire risposte certe o consigliare soluzioni affidabili.
CASE STUDY
The ITER reactor’s electron cyclotron heating and current drive (EC H&CD) system launcher requires an effective cooling system due to the strong thermal loads it supports. In supporting the design of this cooling system, NINE performed several numerical studies using the Ansys simulation tools
ansys energy
CORSI A CALENDARIO
Le batterie agli ioni di litio, grazie alla loro alta densità energetica e lunga durata, trovano largo impiego in numerosi dispositivi elettronici, veicoli elettrici e sistemi di accumulo di energia rinnovabile. Scopri la nostra offerta di corsi di formazione su oorja, una piattaforma SaaS basata sull'uso del Machine Learning, progettata per analizzare e prevedere il comportamento delle celle e delle batterie, utilizzando un numero limitato di dati per ottenere previsioni accurate ed efficienti.
training oorja
CASE STUDY
In this technical article, we demonstrate how to apply a one-way coupling technique using a combination of ParticleWorks and LS-DYNA to estimate tsunami damage to a vehicle.
automotive ls-dyna energy cfd particleworks environmental
CASE STUDY
Multibody simulation is integral to engineering, enabling precise analysis of structural loads and dynamic behaviours in complex systems. In the context of forklifts, where tyres play a critical role due to the absence of suspension systems, accurate tyre modelling is essential. This study develops and validates a hysteretic Bouc-Wen model for the radial dynamics of solid rubber tyres to enhance simulation reliability.
multibody recurdyn mechanics automotive
CASE STUDY
By taking advantage of EnginSoft experience in Simulation Based Engineering, by means of the FEM analysis, the Durability, Structural Integrity and Buckling behavior of a new group of toxic liquid and fuel storage tanks have been investigated.
energy mechanics ansys