oorja is a product of oorja
Two approaches are traditionally used in the design of a Li-ion battery.
With the first, the behavior of a battery is simulated through the use of CAE (Computer Aided Engineering) technologies, which allow the product to be represented using numerical models focused on physics modeling and analysis. But, for an accurate prediction, it is necessary to introduce multi-physics analysis, i.e. to introduce further parameters, the electrophysical ones characteristic of batteries for example, which make the actual physical model more complex. To this we must add the increase in product complexity, determined by the introduction of new technologies and new materials, and by attention to environmental sustainability. And it is this complexity that has brought out the limits in adopting this approach: from the increasing calculation times, to the extensive skills that are required (on the software to be used, on the types of analyzes to be carried out, on the characteristics and behaviors of the new materials, to name the main ones).
The second approach, more recent, is instead linked to automatic learning models (Machine Learning) . In this case, datasets are used to design a new battery, consisting of a large number of data collected experimentally.
But how reliable is this data when designing a new product? The design and performance of a battery depend on many factors: the limit in using this approach is the availability of data that is actually useful in the early design phases.
oorja fits into this scenario: the strength of this platform lies in the adoption of a hybrid approach, which exploits the advantages of the two methodologies described above, and overcomes their limitations.
oorja uses an approach based on simple and fast physical models, which will form the basis for the machine learning algorithm, thus reducing the number of data needed for the initial dataset.
oorja simulates and predicts the behavior of batteries, analyzing different performances, such as, for example, the quantity of current produced, the "capacity/power fade", overheating during use, fast charging protocols and related aspects to the guarantee.
At the basis of the methodology there is a workflow made up of 9 modules:
To underline the extremely "user friendly" graphic interface of oorja, which makes the use of the complex methodology extremely simple: it is based on the use of a "wizard", i.e. an automatic system, which guides the user step by step in workflow generation.
Send your technical questions to our experts!
Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a
proven solution.
CASE STUDY
Particle-based CFD (computational fluid dynamics) methods have become very popular in recent years due to the simplicity of the model configuration process and the ability to solve free surface problems such as splashing.
automotive particleworks
training courses
Lithium-ion batteries, with their high energy density and long lifespan, are extensively used in a wide range of electronic devices, electric vehicles, and renewable energy storage systems. Explore our range of training courses on oorja, a SaaS platform based on Machine Learning algorithms to analyze and predict the behavior of cells and batteries. By utilizing a limited dataset, it delivers highly accurate and efficient forecasts.
training
CASE STUDY
This work presents the CFD model of an axial piston pump and compares it to a validated 0D model. The main objective of this study was to analyze the flow field inside the pump, focusing on the aspects that involved the main inner volumes, such as the filling and emptying dynamics in the piston chambers and the flow field inside the ducts.
ansys cfd energy
CASE STUDY
The ITER reactor’s electron cyclotron heating and current drive (EC H&CD) system launcher requires an effective cooling system due to the strong thermal loads it supports. In supporting the design of this cooling system, NINE performed several numerical studies using the Ansys simulation tools
ansys energy
CASE STUDY
Marelli Motori engineers use Ansys multiphysics solutions to custom-design motors and generators to solve challenges in hydropower, cogeneration, oil and gas, civil and commercial marine transport, military applications, and ATEX applications involving motors and generators in explosive atmospheres, among other applications.
automotive ansys energy