oorja is a product of oorja
Two approaches are traditionally used in the design of a Li-ion battery.
With the first, the behavior of a battery is simulated through the use of CAE (Computer Aided Engineering) technologies, which allow the product to be represented using numerical models focused on physics modeling and analysis. But, for an accurate prediction, it is necessary to introduce multi-physics analysis, i.e. to introduce further parameters, the electrophysical ones characteristic of batteries for example, which make the actual physical model more complex. To this we must add the increase in product complexity, determined by the introduction of new technologies and new materials, and by attention to environmental sustainability. And it is this complexity that has brought out the limits in adopting this approach: from the increasing calculation times, to the extensive skills that are required (on the software to be used, on the types of analyzes to be carried out, on the characteristics and behaviors of the new materials, to name the main ones).
The second approach, more recent, is instead linked to automatic learning models (Machine Learning) . In this case, datasets are used to design a new battery, consisting of a large number of data collected experimentally.
But how reliable is this data when designing a new product? The design and performance of a battery depend on many factors: the limit in using this approach is the availability of data that is actually useful in the early design phases.
oorja fits into this scenario: the strength of this platform lies in the adoption of a hybrid approach, which exploits the advantages of the two methodologies described above, and overcomes their limitations.
oorja uses an approach based on simple and fast physical models, which will form the basis for the machine learning algorithm, thus reducing the number of data needed for the initial dataset.
oorja simulates and predicts the behavior of batteries, analyzing different performances, such as, for example, the quantity of current produced, the "capacity/power fade", overheating during use, fast charging protocols and related aspects to the guarantee.
At the basis of the methodology there is a workflow made up of 9 modules:
To underline the extremely "user friendly" graphic interface of oorja, which makes the use of the complex methodology extremely simple: it is based on the use of a "wizard", i.e. an automatic system, which guides the user step by step in workflow generation.
Send your technical questions to our experts!
Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a
proven solution.

CASE STUDY
This article describes how EnginSoft supported Metasystem in acquiring the know-how to satisfy future customer requests on the one hand, and to create projects that are as profitable as possible in terms of waste minimization, on the other hand.
automotive tolerances cetol

training courses
Lithium-ion batteries, with their high energy density and long lifespan, are extensively used in a wide range of electronic devices, electric vehicles, and renewable energy storage systems. Explore our range of training courses on oorja, a SaaS platform based on Machine Learning algorithms to analyze and predict the behavior of cells and batteries. By utilizing a limited dataset, it delivers highly accurate and efficient forecasts.
training

CASE STUDY
The car is designed to race on the ultra-flat Salt Flats in Bonneville, Utah. The racecar weighs less than 500kg so increasing the downforce was critical. Reducing aerodynamic drag was also critical due to the power requirements of the racecar.
cfd automotive
CASE STUDY
This article introduces a case study on the waterproofing of an automotive air conditioning system for rainy conditions using Particleworks, a particle method CFD software.
particleworks automotive
CASE STUDY
Off-road vehicles are evolving towards full sustainability, driving the need for solutions that maximize fuel efficiency while reducing atmospheric emissions. To meet the growing interest in electrification, the significant challenge of power loss management in electric engines must be addressed.
particleworks automotive