True-Load

True-Load

Load Calculation Software for Product Engineering

True-Load

True-Load è un prodotto Wolf Star Technologies.

Ogni ingegnere è consapevole che uno dei principali problemi delle simulazioni è la determinazione dei carichi che agiscono sulla struttura da dimensionare in base al suo reale utilizzo.

True-Load è il primo software presente sul mercato che sfrutta i modelli ad elementi finiti per posizionare in modo ottimale gli estensimetri sui componenti fisici senza modificarli e ricavarne i carichi a cui sono sottoposti durante i test.

True-Load si interfaccia direttamente con i principali software di calcolo presenti sul mercato e in particolare con i codici di fatica. In questo modo è possibile integrare in modo semplice ed intuitivo nel ciclo di progettazione i carichi reali agenti su una struttura e non, come spesso si è costretti a fare, quelli provenienti da studi eseguiti su progetti simili, o da esperienze pregresse. L’integrazione avviene in modo efficace ed al contempo semplice.

True-Load - It is a first to market to solution that leverages FEA models to place strain gauges on unmodified physical parts and then back calculate loading.

Principali vantaggi

Richiedi una demo gratuita

  Riduce notevolmente il tempo del ciclo di progettazione

  Determina il posizionamento ottimale dell'estensimetro dal modello FEA

 Calcola le matrici di proporzionalità del carico

Documentazione

brochure

Product brochure

Read the brochure

true load

Ask the Expert

Chiedi all'esperto

Invia le tue domande ai nostri tecnici specializzati!
Mettiti in contatto con uno dei nostri esperti, che ti potrà fornire risposte certe o consigliare soluzioni affidabili.

Ask the expert Richiedi una demo gratuita

Approfondimenti

CASE STUDY

SACMI designs optimized next-generation components using automated surface sculpting

Uses Adjoint and BGM shape-modification approaches for mesh morphing

Mesh morphing has proven to be a valuable tool in parametrizing numerical models to perform shape optimization. It allows engineers to save time in generating new configurations for analysis because it does not require geometry modification and mesh re-generation.

ansys mechanics

NEWSROOM

Resta in contatto con noi: news, analisi e tendenze approfondite dai nostri esperti

Newsroom  

MEDIA CENTER

Esplora il nostro archivio per vedere i video, i video tutorial e le registrazioni dei nostri webinar.

Media Center  

CASE STUDY

Refining the design of a spout for a laundry detergent

Particleworks enables fluid flow simulation combined with human-like behavior to improve product performance

In this case study, LION Corporation uses Particleworks to simulate fluid flow to improve the design of a new cap spout for its new HARETA brand of laundry detergent.

particleworks cfd consumer-goods mechanics

Scopri di più

CASE STUDY

Tools and methodologies for generating digital twins in medical research

An overview of the latest advances of the use of CAE technologies in the medical field

This article provides a non-exhaustive overview of some of the latest advances in the adoption of CAE technologies in the medical field by citing some ongoing EU research programs.

rbf-morph biomechanics

CASE STUDY

Using high-fidelity FSI simulation and advanced mesh morphing to simulate and mitigate vortex-induced Vibrations

This study discusses the complex and challenging problem of controlling vortex-induced vibrations (VIV).

cfd mechanics ansys rbf-morph

CASE STUDY

The role of mechanical variation management in medical devices

A case study of drug delivery devices developed by Flex

The development of medical devices presents unique technical, regulatory, and economic challenges, requiring a multidisciplinary approach to ensure patient safety, reliability, and market competitiveness. Medical devices span a wide spectrum—from drug delivery systems to surgical robots—and must meet stringent functional, material, and regulatory requirements. A critical and often underestimated factor influencing their performance and manufacturability is mechanical variation, the inevitable deviation from nominal design that occurs during production.

biomechanics