ViveLab Ergo

Ergonomic verification in 3D virtual space

ViveLab Ergo is a high-performance cloud computing innovative simulation system that is perfectly capable of modeling machines, robots and people moving in a given physical environment. Harmonizing the co-operation of these three elements in the industry's 4.0 era is an indispensable task. Using an anthropometric database containing millions of samples, it precisely models ninety-nine percent of human population's anthropometrical characteristics. It highlights the health-damaging effects of forced movements caused by incorrect workplace design using 7 built-in ergonomic analyzes: RULA, OWAS, NASA-OBI, ISO 11226, EN 1005-4, reachability zone, spaghetti diagram.

This technology can be used to ergonomic improvement of existing workstations, ergonomic design of new workstations, or ergonomic design of products. The user-friendly interface has been designed considering the most modern ergonomic viewpoints, which ensures that design engineers, work safety managers, HR specialists, or even creative designers can independently run or collaboration a team to run and evaluate simulations logging in from anywhere in the world.

ViveLab Ergo is a product of ViveLab Ergo Ltd.

ViveLab Ergo

Ergonomic verification in 3D virtual space

ViveLab Ergo

Ergonomic verification in 3D virtual space

Main Benefits

  Coordinate the human – machine – environment system

  Reduce the risk of accidents

  Optimize workflows

  Identify the automatable workplaces

  Increase operational efficiency

  Ergonomic validation in product design

Request a free demo

 

Ask the expert

Send your technical questions to our experts!

Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Insights

CASE STUDY

Advanced strategies for the flow field optimization of a medical device

How to use a hybrid method of CFD analysis for product optimization and performance improvement while reducing the computational effort and the time required to achieve the results

Further reduction of the heat loss compared to the best design of the NSGA-II first phase design optimization: a further 4% gained

cfd biomechanics ansys modefrontier optimization

Read More  

NEWSROOM
Stay connected with our news, analysis and trends from our experts

 

Read more  

MEDIA CENTER
Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

Woodrail Road Barrier Impact Analysis

The Woodrail® road barrier is designed to improve vehicle safety blending in with the surrounding environment.

The barrier has been thoroughly tested and certified against car and bus impact conditions.

automotive ls-dyna

Read More  

Find out more

Our Expertise in ViveLab Ergo

CASE STUDY

Optimization of an automotive manufacturing system design taking into account regional requirements

Applying CAE to facilitate business CapEx decision making in the automotive manufacturing sector

In this case study, EnginSoft engineers explain how they used modeFRONTIER to assist Comau, a Fiat Chrysler subsidiary, to optimize their approach to the preliminary design of production systems for automotive manufacturing system RFQs.

automotive optimization rail-transport modefrontier SIMUL8 iphysics industry4

Read More  

CASE STUDY

Lucid Motors boosts electric vehicle performance with modeFRONTIER

Performing multi-objective inverter cooling system optimization with modeFRONTIER

This brief article summarises how California-based electric car company, Lucid Motors, used the CAE application, ModeFRONTIER for performing Computational Fluid Dynamics (CFD)

automotive optimization modefrontier

Read More  

CASE STUDY

Cooling fan module road test simulation

For engine cooling, Johnson Electric offers smart Cooling Fan Modules (CFM) with best in class efficiency and power density

ptimization of the product starts with a strong correlation of the model with specifically designed tests under controlled conditions.

ansys automotive

Read More