ViveLab Ergo

Ergonomic verification in 3D virtual space

ViveLab Ergo is a high-performance cloud computing innovative simulation system that is perfectly capable of modeling machines, robots and people moving in a given physical environment. Harmonizing the co-operation of these three elements in the industry's 4.0 era is an indispensable task. Using an anthropometric database containing millions of samples, it precisely models ninety-nine percent of human population's anthropometrical characteristics. It highlights the health-damaging effects of forced movements caused by incorrect workplace design using 7 built-in ergonomic analyzes: RULA, OWAS, NASA-OBI, ISO 11226, EN 1005-4, reachability zone, spaghetti diagram.

This technology can be used to ergonomic improvement of existing workstations, ergonomic design of new workstations, or ergonomic design of products. The user-friendly interface has been designed considering the most modern ergonomic viewpoints, which ensures that design engineers, work safety managers, HR specialists, or even creative designers can independently run or collaboration a team to run and evaluate simulations logging in from anywhere in the world.

ViveLab Ergo is a product of ViveLab Ergo Ltd.

ViveLab Ergo

Ergonomic verification in 3D virtual space

ViveLab Ergo

Ergonomic verification in 3D virtual space

Main Benefits

  Coordinate the human – machine – environment system

  Reduce the risk of accidents

  Optimize workflows

  Identify the automatable workplaces

  Increase operational efficiency

  Ergonomic validation in product design

Request a free demo

 

Ask the expert

Send your technical questions to our experts!

Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Insights

CASE STUDY

CFD study to optimize the cooling performance of a narrow specialty tractor

Numerical modelling reveals design strengths and weaknesses prior to prototype testing, saving time and money

In this technical article, a CFD study of various designs for four different specialty tractors: two brands of specialty tractors for vineyard configurations, and two brands of specialty tractors for orchard configurations, are described.

automotive ansys cfd

Read More  

NEWSROOM
Stay connected with our news, analysis and trends from our experts

 

Read more  

MEDIA CENTER
Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

Fuel Injection

A multibody model was developed using RecurDyn to study the high-speed dynamic behavior of the injector during a typical work cycle

The model contains both rigid and flexible bodies: the pin was modelled using the proprietary Full Flex technology which includes a Finite Element body in the dynamic simulation.

recurdyn mbd-ansys automotive multibody

Read More  

Find out more

Our Expertise in ViveLab Ergo

CASE STUDY

A natural remedy for hot-spot stresses

Using advanced mesh morphing to seamlessly perform bio-inspired structural shape optimization

This paper demonstrates how the biological growth method, studied by Mattheck in the 1990s, can be easily implemented for structural shape optimization finite element method (FEM) analyses using advanced radial basis functions (RBF) mesh morphing.

ansys biomechanics rbf-morph

Read More  

CASE STUDY

Cooling fan module road test simulation

For engine cooling, Johnson Electric offers smart Cooling Fan Modules (CFM) with best in class efficiency and power density

ptimization of the product starts with a strong correlation of the model with specifically designed tests under controlled conditions.

ansys automotive

Read More  

CASE STUDY

LS-DYNA and modeFRONTIER for Material Model Calibration at Automobili Lamborghini

The main challenge is to reproduce their structural behavior by developing suitable numerical models

While the engineers relied on modeFRONTIER's capabilities, the procedure has been to calibrate the constitutive parameters of LS-DYNA's advanced material models, and to use them for prediction, design optimization and robustness analysis.

modefrontier ls-dyna automotive composites

Read More