ViveLab Ergo

Ergonomic verification in 3D virtual space

ViveLab Ergo is a high-performance cloud computing innovative simulation system that is perfectly capable of modeling machines, robots and people moving in a given physical environment. Harmonizing the co-operation of these three elements in the industry's 4.0 era is an indispensable task. Using an anthropometric database containing millions of samples, it precisely models ninety-nine percent of human population's anthropometrical characteristics. It highlights the health-damaging effects of forced movements caused by incorrect workplace design using 7 built-in ergonomic analyzes: RULA, OWAS, NASA-OBI, ISO 11226, EN 1005-4, reachability zone, spaghetti diagram.

This technology can be used to ergonomic improvement of existing workstations, ergonomic design of new workstations, or ergonomic design of products. The user-friendly interface has been designed considering the most modern ergonomic viewpoints, which ensures that design engineers, work safety managers, HR specialists, or even creative designers can independently run or collaboration a team to run and evaluate simulations logging in from anywhere in the world.

ViveLab Ergo is a product of ViveLab Ergo Ltd.

ViveLab Ergo

Ergonomic verification in 3D virtual space

ViveLab Ergo

Ergonomic verification in 3D virtual space

Main Benefits

  Coordinate the human – machine – environment system

  Reduce the risk of accidents

  Optimize workflows

  Identify the automatable workplaces

  Increase operational efficiency

  Ergonomic validation in product design

Request a free demo

 

Ask the expert

Send your technical questions to our experts!

Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Insights

CASE STUDY

CFD Characterization of the Ventricular Assist Device HeartAssist 5® Through a Sliding Mesh Approach

Analysis to determine possible optimizations to enhance device safety and efficacy for long-term patient use

This technical article describes how high-end numerical Computational Fluid Dynamics (CFD) simulations were applied to mimic the realistic operating conditions of a Ventricular Assist Device (VADs) and analyze its hemodynamics in order to identify potential areas for optimization of the device’s performance, safety and efficacy.

ansys cfd biomechanics

Read More  

NEWSROOM
Stay connected with our news, analysis and trends from our experts

 

Read more  

MEDIA CENTER
Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

Cold Forging of a Silent Block Bush Steel Sleeve

Minimize physical prototypes and reduce waste, while reducing the lead time and overall production costs

The object of this study was simulating and optimizing the cold forging process for a silent block bush steel sleeve. A silent block bush is traditionally used in the linkage system of a car suspension, in railway carriages and in agricultural machinery.

metal-process-simulation forge forging automotive

Read More  

Find out more

Our Expertise in ViveLab Ergo

CASE STUDY

Fuel Injection

A multibody model was developed using RecurDyn to study the high-speed dynamic behavior of the injector during a typical work cycle

The model contains both rigid and flexible bodies: the pin was modelled using the proprietary Full Flex technology which includes a Finite Element body in the dynamic simulation.

recurdyn mbd-ansys automotive multibody

Read More  

CASE STUDY

CFD Characterization of the Ventricular Assist Device HeartAssist 5® Through a Sliding Mesh Approach

Analysis to determine possible optimizations to enhance device safety and efficacy for long-term patient use

This technical article describes how high-end numerical Computational Fluid Dynamics (CFD) simulations were applied to mimic the realistic operating conditions of a Ventricular Assist Device (VADs) and analyze its hemodynamics in order to identify potential areas for optimization of the device’s performance, safety and efficacy.

ansys cfd biomechanics

Read More  

CASE STUDY

Optimization of an automotive manufacturing system design taking into account regional requirements

Applying CAE to facilitate business CapEx decision making in the automotive manufacturing sector

In this case study, EnginSoft engineers explain how they used modeFRONTIER to assist Comau, a Fiat Chrysler subsidiary, to optimize their approach to the preliminary design of production systems for automotive manufacturing system RFQs.

automotive optimization rail-transport modefrontier SIMUL8 iphysics industry4

Read More