ViveLab Ergo

Ergonomic verification in 3D virtual space

ViveLab Ergo is a high-performance cloud computing innovative simulation system that is perfectly capable of modeling machines, robots and people moving in a given physical environment. Harmonizing the co-operation of these three elements in the industry's 4.0 era is an indispensable task. Using an anthropometric database containing millions of samples, it precisely models ninety-nine percent of human population's anthropometrical characteristics. It highlights the health-damaging effects of forced movements caused by incorrect workplace design using 7 built-in ergonomic analyzes: RULA, OWAS, NASA-OBI, ISO 11226, EN 1005-4, reachability zone, spaghetti diagram.

This technology can be used to ergonomic improvement of existing workstations, ergonomic design of new workstations, or ergonomic design of products. The user-friendly interface has been designed considering the most modern ergonomic viewpoints, which ensures that design engineers, work safety managers, HR specialists, or even creative designers can independently run or collaboration a team to run and evaluate simulations logging in from anywhere in the world.

ViveLab Ergo is a product of ViveLab Ergo Ltd.

ViveLab Ergo

Ergonomic verification in 3D virtual space

ViveLab Ergo

Ergonomic verification in 3D virtual space

Main Benefits

  Coordinate the human – machine – environment system

  Reduce the risk of accidents

  Optimize workflows

  Identify the automatable workplaces

  Increase operational efficiency

  Ergonomic validation in product design

Request a free demo

 

Send your technical questions to our experts!

Ask an Expert connects you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Ask the expert

Insights

CASE STUDY

Accurate modeling and simulation of belt-type continuously variable transmissions

RecurDyn facilitates virtualization of dynamic systems governed by both contacts and large flexibility

RecurDyn software allows belt-type systems, including CVTs, to be both modelled and simulated accurately. The dedicated “Belt Toolkit”, which is an automated modeling assistant, includes all of the components found in a belt-type transmission.

automotive rail-transport recurdyn

Read More  

NEWSROOM

Stay connected with our news, analysis and trends from our experts

 

Read more  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

Filming the Bloodhound Super Sonic Car Land Speed Record

Using CAE to optimise the design of a prototype for a super sonic filming drone

This detailed technical case study describes how the students arrived at a supersonic aircraft drone prototype using MATLAB and modeFRONTIER in order to reduce the time and costs of numerical and wind-tunnel testing.

automotive modefrontier optimization

Read More  

Find out more

Our Expertise with ViveLab Ergo

CASE STUDY

High Pressure Die Casting Optimization of a Connecting Rod

A multi-objective engineering simulation study of the connecting rods manufacturing process

Connecting rods connect the pistons to the crank shaft in automotive engines and are vital components of the engine. Connecting rods are traditionally produced in ferrous metals by forging or die casting.

metal-process-simulation automotive magma

Read More  

CASE STUDY

Cost Effective High- Performance Design: Innovation is the Answer

Marelli Motori applies multiphysics simulation to cost-effectively design better, more reliable motors and generators faster

Improving efficiency while reducing cost is a very complex engineering challenge. Marelli Motori makes extensive use of CFD and FEM multiphysics simulation to do just that in the design of its electrical motors and generators.

ansys automotive cfd

Read More  

CASE STUDY

A new methodology based on LS-DYNA for integrating product & process engineering of a steel wheel

Wheels are products with key geometrical and structural specifications.

A new methodology is presented, following an integrated process-product analysis approach, showing some benefits related to increased accuracy and the potential application of new optimization methods.

ls-dyna automotive composites

Read More