Ansys Composite Cure Simulation

Ansys Composite Cure Simulation

Evaluation of autoclave curing effects on composite laminates using the simulation

Ansys Composite Cure Simulation

Ansys is a software suite of Ansys Inc.

Deformations induced by the curing process (Process Induced Distortions - PID) are one of the main problems for composite materials production with polymer matrix (Fiber Reinforced Plastics - FRP). These effects are mainly caused by residual stresses that arise during the matrix polymerization. Process optimization can be pursued through a traditional trial & error approach, generally convenient and effective only for simple geometries. More complex composite parts require more sophisticated models which must be based on an in-depth understanding of residual stresses (e.g. different composite thermal expansion in-plane and through-the-thickness, shrinkage by polymerization, layup asymmetry, mold-composite interactions, etc.).

Ansys Composite Cure Simulation (ACCS) is a dedicated simulation technology to study the effects of the cure process for polymeric matrix composites. ACCS is implemented within the Workbench platform through ACT and it extends the thermal and structural solver capabilities. The integration in Workbench and Mechanical allows to exploit Ansys Composite PrepPost (ACP) for the composite lay-up definition. Through ACCS it's possible to optimize a pre-existing project reducing scraps and rework, it makes new products design cycle more efficient and optimizes mold geometry to reduce the onset of residual stress.

Request a free demo
Ask the Expert

Ask the expert

Send your technical questions to our experts!
Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Ask the expert Request a free demo

Insights

CASE STUDY

Structural Optimization of the Drift Chamber at FermiLAB

A collaboration between EnginSoft and the Italian Institute of Nuclear Physics (I.N.F.N.)

The ultimate goal of the study was to optimize the Drift Chamber’s performance in terms of stiffness, strength and weight o be mounted on the Mu2e particle detector at FermiLAB in Chicago

construction modefrontier ansys optimization energy

NEWSROOM

Stay connected with us: news, analysis and trends from our experts.

Newsroom  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars.

Media Center  

CASE STUDY

A CFD simulation of melting furnace for the production of stone wool

Simulation provides substantial information about the melter’s operating conditions

Gamma Meccanica’s R&D department is constantly researching new solutions to improve the overall performance of equipment, production capacity and reliability while developing environmentally sustainable processes and applications to benefit its customers.

cfd mechanics ansys

Find out more

Our competences in Ansys Composite Cure Simulation

CASE STUDY

Beyond the barrier of perfection

Optimization Case study of a multi-stage steam turbine designed by Franco Tosi Meccanica

This case study details the design optimization of an axial steam turbine of 160 MW, focusing on maximizing the total-to-total isentropic efficiency of the last three low-pressure stages of the turbine.

cfd ansys turbomachinery modefrontier

CASE STUDY

CFD-Driven Design of a Ventilation System for Kitchen Hoods

Optimized design achieves energy efficiency and cost containment objectives

This article presents a study that the Elica Group commissioned from EnginSoft to support it engineering team in redesigning the ventilation system of its “Tilly” kitchen hood model

appliances ansys cfd

CASE STUDY

Whirlpool uses simulation to investigate improvements to vacuum cleaner performance

Simulation studies help Whirlpool identify the most useful design modifications to support its product objectives

This article describes how EnginSoft applied a Computational Fluid Dynamics (CFD) analysis, on behalf of Whirlpool EMEA, to simulate three different geometrical design modifications to the vacuum cleaner head to improve on a baseline performance that was modelled first.

appliances cfd ansys