Research Projects

RLW Navigator

Remote Laser Welding Navigator


Smart manufacturing - Automotive Production Assembly Line


To develop an innovative Process Navigator to configure, integrate, test and validate applications of Remote Laser Welding (RLW) in automotive assembly line

Project Summary

RLW is emerging as a promising joining technology for sheet metal assembly due to benefits on several fronts including reduced processing time, (50-75%) and decreased factory floor footprint (50%), reduced environmental impact through energy use reduction (60%), and providing a flexible process base for future model introduction or product change. Currently, RLW systems are limited in their applicability due to an acute lack of systematic ICT-based simulation methodologies to navigate their efficient application in automotive manufacturing processes. The project aims to address this by developing a Process Navigator simulation system that will deal with three key challenges thereby allowing manufacturers to utilize the advantages of the RLW system.


The most critical obstacle that currently prevents the successful implementation of RLW is the need for tight dimensional control of part-to-part gap during joining operations, essential to ensure the quality of the stitch. The existing assembly system architecture must be reconfigured to provide the opportunity to evaluate the RLW system in terms of its feasibility to perform all required assembly tasks. The project will develop systematic evaluation and learning methods to assess and improve the overall performance, cost-effectiveness and eco-efficiency of the RLW system.

ES Role

ES will mainly contribute in the integration of the results from the production system level and the work station level by developing the RLW Navigator Architecture and the relative Software Modules Integration Platform. ES will also be involved in the dissemination of project results in and outside the consortium.


The University of Warwick | Magyar tudomanyos akademia szamitastechnikai es automatizalasi kutato intezet | Politecnico di Milano | University of Patras | Ecole polytechnique federale de lausanne | Università degli Studi del Molise | Jaguar Cars Limited | Stadco Automotive Limited | Comau SpA | Precitec KG | EnginSoft SpA | Ulsan national institute of science and technology | Land Rover

Funding Scheme

Funding Scheme FP7 | Call identifier THEME [FoF-ICT-2011.7.4] [Digital factories: Manufacturing design and product lifecycle management]

RLW Navigator

Project web site

Visit the website


3 years


January 2012 – December 2014


University of Warwick | Principal contact: Professor Darek Ceglarek

Reference in EnginSoft

Antonio Taurisano – Francesco Franchini

Partners Number


Ask the Expert

Contact us!

Contact our R&D team for any information.

Ask for information

Find out more

Some of our competences in research and technology transfer

Research project


Precision medicine for musculoskeletal regeneration, prosthetics and active ageing

The ultimate goal of PREMUROSA project is to train a new generation of scientists with an integrated vision of the whole value chain in musculo-skeletal regeneration technologies and able to boost the necessary innovations to achieve precision principles in developing innovative devices and optimized clinical applications.

Research project


Robotized foundry for the health of the workforce

The robotic equipment developed by the project for grinding, deburring, de-scoring and repairing castings is a first for most ferrous alloy foundries. The direct benefits that can be identified are varied.

Research project


Diagnostic and prognostic methodologies and development of sensors for functional integrity monitoring applied to the aeronautics and transport sectors

As part of the SMEA project, diagnostic and prognostic methodologies have been studied and implemented, supported by appropriate sensors, for monitoring the functional integrity of a mechanical component typical of the aeronautical and transport sectors.