Research Projects

ForZDM

Integrated Zero Defect Manufacturing Solution for High Value Adding Multi-stage Manufacturing systems

Sector

Smart manufacturing

Product/Objective

The ForZDM project developed and demonstrated tools to support the rapid implementation of Zero-Defect Manufacturing solutions in industry, and to design more competitive and robust multi-stage manufacturing systems.

Project Summary

Manufacturing companies face the challenge of delivering high quality products of increasing complexity, with limited use and waste of resources. "Zero Defect Manufacturing” (ZDM) is a recent paradigm aiming at going beyond traditional six-sigma approaches. The aim of the ForZDM project was to develop and demonstrate tools to support the rapid deployment of ZDM solutions in the industry and to design more competitive and robust multi-stage manufacturing systems. The ForZDM methodology expands current single process boundaries towards a production line perspective, which allows to contrast defects before, during and after their generation through diagnosis, preventive and corrective mechanisms, applied with real-time, medium term and long term control actions.

Innovation

The proposed ZDM approach is based on the combined adoption of new solutions based on data collection and root cause analysis to reduce defect generation as well as new in-line defect management and improved production traceability solutions to mitigate defect propagation along the production line stages. This was achieved through the proper integration of innovative enabling technologies, such as cyber-physical systems, selective inspections, advanced analysis and integrated process, system-level modelling and simulation and partial flow control solutions.

ES Role

EnginSoft supported the development of the ZDM System Level Engineering and Control platform, a Decision-Support System tool able to identify optimal assignment, routing, scheduling and planning policies for manufacturing. It expanded the range of modeFRONTIER applications and created a new product in a market where no competing software package exists. modeFRONTIER is an integration platform for multi-objective and multi-disciplinary optimization.

Partners

GKN AEROSPACE NORWAY AS, ABF-INDUSTRIELLE AUTOMATION GMBH, CAF, ENGINSOFT SPA, ENKI SRL, IK4-IDEKO, MARPOSS SPA, MASMC SPA, MONTRONIX, NXTCONTROL GMBH, POLITECNICO DI MILANO, TECNALIA RESEARCH & INNOVATION, UNIVERSITY OF STUTTGART

Funding Scheme

Funding Scheme Horizon2020 | Call identifier H2020-FOF-03-2016

ForZDM

Project web site

Visit the website

Duration

48 + 6 months

Period

October 2016 - March 2021

Coordinator

GKN AEROSPACE NORWAY AS (until August 2020) | Politecnico di Milano (since September 2020)

Reference in EnginSoft

Giovanni Borzi

Partners Number

12

Ask the Expert

Contact us!

Contact our R&D team for any information.

Ask for information

Find out more

Some of our competences in research and technology transfer

Research project

HYSSE

Hydroponic SubSystem Engineering

Develop an innovative design of a sealed gully and hydroponic system for space applications of food production with regenerative systems: space stations, lunar base and Mars exploration.

Research project

OScaR

Optical SCAn-and-Repair solution for machine tools

The final goal of the project is to define a technology solution to repair metal components. End users require an automated or semi-automated solution for mounting a part of partially unknown shape into a machine, measuring the relevant part of its surface in 3D and automatically generating a repair program to restore it to the desired shape.

Research project

SMEA

Metodologie diagnostiche e prognostiche e sviluppo di sensori per il monitoraggio di integrità funzionale applicato al settore aeronautico e dei trasporti

As part of the SMEA project, diagnostic and prognostic methodologies have been studied and implemented, supported by appropriate sensors, for monitoring the functional integrity of a mechanical component typical of the aeronautical and transport sectors.