TwinMesh

A revolutionary meshing solution for reliable CFD analysis of rotary positive displacement machines

Thanks to TwinMesh software, computational fluid dynamics (CFD) has become an efficient development tool for the first time also for manufacturers of rotary positive displacement machines.

An important prerequisite for reliable CFD simulations, is the creation of high-quality meshes that mimic the computational domain as precisely as possible, without increasing too much the model number of elements.

The creation of such computational domain poses two significant challenges for engineers when working with rotary pumps, gear pumps and screw compressors. The complexity of the geometry of rotary positive displacement machines results from the flow volumes in the working chambers which vary over time. The second challenge are the extremely small gaps between the rotors and between the rotors and the housing.

With the help of meshing software TwinMesh, the time-varying flow volumes and gaps in the working space of volumetric machines can be automatically meshed with high-quality structured hexahedral meshes, for a number of angular positions specified by the user. By using a smoothing algorithm contained in TwinMesh, the node distributions always remain homogeneous, and the interior element angle remains nearly orthogonal.

TwinMesh provides also special templates for all typical displacement machines, taking care of the actual simulation setup, monitoring and post-processing in ANSYS CFX simply pressing a button.

TwinMesh is a product of CFX Berlin Software GmbH.

CFD mesh and transient simulation of an external gear pump
CFD transient simulation of a gerotor pump

Main Benefits

  Enabling technology for CFD simulation of rotary positive displacement machines (RPDM)

  Significantly reduce user effort and CPU time for the simulation of RPDM

  Best technology and practices implemented for fast, reliable and efficient simulation

  Accurate and reliable product durability, performance and efficiency prediction

  Drive real innovation and optimization of rotary positive displacement machines

Request a free demo

 

Ask the expert

Send your technical questions to our experts!

Ask an Expert connects you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Ask the expert

Insights

CASE STUDY

Oil flow simulation in a reciprocating engine at Honda R&D

Particleworks, an innovative particle method simulation tool, playing an important role in previously-unattainable simulation problems

In this technical article, EnginSoft and Prometech explain how they executed a highly complex computational simulation on the fluid-structure interaction of the oil flow inside a reciprocating engine, on behalf of Honda R&D.

automotive cfd particleworks

Read More  

NEWSROOM

Stay connected with our news, analysis and trends from our experts

 

Read more  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

High Quality Printing with CFD

Simulation allows engineers to improve print quality, ensure operator safety and contain energy consumption

In this article, Uteco describes how it applied Computational Fluid Dynamics (CFD) to assist the design and improvement of its printing machines.

cfd ansys mechanics

Read More  

Find out more

Our Expertise with TwinMesh

CASE STUDY

Beyond the barrier of perfection

Optimization Case study of a multi-stage steam turbine designed by Franco Tosi Meccanica

This case study details the design optimization of an axial steam turbine of 160 MW, focusing on maximizing the total-to-total isentropic efficiency of the last three low-pressure stages of the turbine.

cfd ansys turbomachinery modefrontier

Read More  

CASE STUDY

Trapped-vortex approach for syngas combustion in gas turbines

3D Computational Fluid Dynamics analysis reveals ideal placement for the inlets to create the energetic vortex

This technical article presents a study to design a device that operates entirely on the principle of trapped vortices that intrinsically improve the mixing of hot combustion gases with fresh mixture, a characteristic that is essential both to diluted combustion and to Moderate or Intense Low-oxygen Dilution (MILD) combustion.

ansys cfd turbomachinery energy oil-gas

Read More  

CASE STUDY

Transient CFD Analysis of a Pelton Turbine

The performance evaluation to upgrade an existing hydropower plant

EnginSoft developed a Computational Fluid Dynamic (CFD) analysis methodology for the performance evaluation of a Pelton turbine

energy cfd ansys oil-gas

Read More