Research Projects


Solar To Hydrogen Hybrid Cycles




To demonstrate that hydrogen "green" production is possible through the exploitation of solar power.

Project Summary

The FCH JU strategy has identified hydrogen production by water decomposition pathways powered by renewables such as solar energy to be a major component for sustainable and carbon-free hydrogen supply. Solar-powered thermo-chemical cycles are capable to directly transfer concentrated sunlight into chemical energy by a series of chemical and electrochemical reactions, and of these cycles, hybrid-sulphur (HyS) cycle was identified as the most promising one.The challenges in HyS remain mostly in dealing with materials (electrolyser, concentrator, acid decomposer/cracker and plant components) and with the whole process flowsheet optimization, tailored to specific solar input and plant site location. With recent technology level at large-scale hydrogen production concepts hydrogen costs are unlikely to go below 3.0-3.5 €/kg. For smaller scale plant, the costs of hydrogen might be substantially higher.


The project focuses on applied, bottle-necks solving, materials research and development and demonstration of the relevant-scale key components of the solar-powered, CO2-free hybrid water splitting cycles, complemented by their advanced modeling and process simulation including conditions and site-specific technical-economical assessment optimization, quantification and benchmarking. For the short-term integration of solar-power sources with new Outotec Open Cycle will be performed. Simplified structure, extra revenues from acid sales and highly efficient co-use of the existing plants may drop hydrogen costs by about 50-75% vs. traditional process designs.

ES Role

EnginSoft will provide MODAO tools and metamodelling methods in order to simulate the full process performances, including elaboration of DoE strategy, data mining and optimisation. EnginSoft will also help SME and R&D performers in modelling issues, simulation of the relevant processes and elaboration of the models. EnginSoft has also the coordination of the project.


EnginSoft S.p.A., Italy | Aalto University Foundation, Finland | DLR - German Aerospace Authority, Germany | ENEA - Agenzia per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile, Italy | Outotec Corp., Finland | Erbicol S.A., Switzerland | Oy Woikoski AB, Finland.

Funding Scheme

Funding Scheme Collaborative Project | Call identifier FCH-JU-2012-1, SP1-JTI-FCH.2012.2.5: Thermo-electricalchemical processes with solar heat sources


Project web site

Visit the website


36 months


June 2013 – May 2016


EnginSoft Spa

Reference in EnginSoft

Stefano Odorizzi, Carla Baldasso

Partners Number


Ask the Expert

Contact us!

Contact our R&D team for any information.

Ask for information

Find out more

Some of our competences in research and technology transfer

Research project


High-Performance Cast Iron and Aluminum Alloys for Innovative Components

The GAP Project’s innovativeness lies in the development of innovative metallic materials with multi-sector application potential, increased by experimentation with new specific technologies (e.g. the use of ceramic cores for die-casting, surface treatments, and joining techniques).

Research project


Precision medicine for musculoskeletal regeneration, prosthetics and active ageing

The ultimate goal of PREMUROSA project is to train a new generation of scientists with an integrated vision of the whole value chain in musculo-skeletal regeneration technologies and able to boost the necessary innovations to achieve precision principles in developing innovative devices and optimized clinical applications.

Research project


Robotized foundry for the health of the workforce

The robotic equipment developed by the project for grinding, deburring, de-scoring and repairing castings is a first for most ferrous alloy foundries. The direct benefits that can be identified are varied.