Research Projects

REM

Recover of Energy from fluid Mechanics for internet of things and remote sensing

Sector

Energy

Product/Objective

Recovery of Mechanical Energy from fluids to feed and Internet of Things (IoT) node that monitors diesel-engine exhaust gases.

Project Summary

The project proposes the development of a system to recover kinetic energy from easily accessible sources in order to make it immediately available for equipment in daily use (e.g. sensors for wearable devices, very low power actuators, low range wireless transmitters, etc.), whose need to be as energy independent as possible is propelling a rigorous search for appropriate technological solutions.

Innovation

The proposed energy recovery system is based on an innovative technology composed of recyclable and environmentally friendly materials, which uses extremely flexible piezoelectric devices and very small dimensions to recover kinetic energy from gaseous fluids (e.g. wind, gases in pipes and air currents), but also from the movement of liquids (e.g. waves, sea and river currents), and which has virtually zero environmental and visual impact.

ES Role

EnginSoft is the project coordinator and will conduct the FSI (fluid structure interaction) and system simulation activities.

Partners

ENGINSOFT SPA | IIT - ISTITUTO ITALIANO DI TECNOLOGIA (CENTER FOR CONVERGENT TECHNOLOGIES) | WEBELETTRONICA SRL

Funding Scheme

Funding Scheme: MISE Programma Operativo Nazionale (PON) “Ricerca e Innovazione 2014-2020” -European Regional Development Fund (ERDF) 2014-2020 EU Structural Funds

REM

Project web site

Duration

18 months

Period

March 2018 - August 2021

Coordinator

EnginSoft

Reference in EnginSoft

Vito Primavera

Partners Number

3

Ask the Expert

Contact us!

Contact our R&D team for any information.

Ask for information

Find out more

Some of our competences in research and technology transfer

Research project

LIFESAVER

Living Impact on Fetal Evolution: Shelter - Analyze - Validate - Empower Regulations

The LIFESAVER addresses the presently unmet societal and healthcare needs in creating and developing of a validated scientific knowledge base for the development and implementation of regulatory approaches relevant to maternal and fetal health.

Research project

SPACE

Scalable Parallel Astrophysical Codes for Exascale

The main specific objective of SPACE is to enable the most widely used European A&C HPC codes (which are also among the most widely used worldwide) to efficiently and effectively exploit the pre-exascale systems funded by EuroHPC Joint Undertaking and available at the end of 2022, and to prepare them for the transition to exascale and beyond.

Research project

INFOS

INternationalisation of Veneto FOundry by networked Strategies

Il progetto supporta alcune aziende della rete SINFONET nell'utilizzo di servizi specialistici, di assistenza, orientamento, affiancamento, informazione e promozione dell’export, per promuovere non solo le proprie specificità ma anche l’intero complesso della filiera fonderia.