Ultra-Wide Band Radome CAE Optimization

Overcoming mechanical and electromagnetic challenges in refining a radome for electronic warfare


Elettronica SpA designs and produces systems for electronic warfare. Each system design is unique according to its platform and purpose. In this article, the company describes how it used CAE to approach the challenging design of a single sandwich radome to protect a large terrestrial system for signal intelligence that used more than 40 ultra-wide band UWB antennae to detect threats.

The radome was specified as roughly cylindrical shape with a diameter of 1 m and a height of 0.8 m, strong enough to withstand difficult environmental conditions while also being electromagnetically transparent from the DC band up to the 40 GHz band. During the design process, the engineers found that the model’s extensive spatial domain was too complex for their available computational resources. Th series of approximations they subsequently inserted in the simulation created simulation artifacts that distorted their initial design conclusions. The article describes how this simulation challenge was overcome.

<h5>Radome in Elettronica SpA’s anechoic chamber</h5>
Radome in Elettronica SpA’s anechoic chamber

Dive deeper

Please login or register to gain access to this contents.

Find out more:



Explore Pervasive Engineering Simulation

ANSYS offers a comprehensive software suite that spans the entire range of physics, providing access to virtually any field of engineering simulation that a design process requires


Read More  


Stay connected with our news, analysis and trends from our experts


Read More  


Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  


A new heart valve replacement procedure modeled with multiphysics simulation could eliminate the need for open-heart surgery

24% operative mortality rate of open-heart surgery for older patients drives search for less-invasive aortic valve replacement technique

Since this cannot be accurately measured in an implanted stent, manufacturers decided to use Multiphysics to simulate the process to better understand the method and to calculate the forces operating on the implant in order to improve the stent design and the surgical procedure, as described in this article.

cfd biomechanics ansys

Read More