Trapped-vortex approach for syngas combustion in gas turbines

3D Computational Fluid Dynamics analysis reveals ideal placement for the inlets to create the energetic vortex

ABSTRACT

The increasing demand to reduce the consumption of fossil fuels and also of carbon dioxide emissions is fueling the research for alternative approaches to energy generation. Using trapped-vortex technology to burn syngas in gas turbine burners potentially offers several advantages over other approaches: it makes it possible to burn a variety of fuels with medium and low calorific values; the NOx emissions have very low levels without dilution or post-combustion treatments; it provides extended flammability limits and improves flame stability. The systems used so far generate a pilot flame by means of combustion in cavities to create premixed high-speed flows. This technical article presents a study to design a device that operates entirely on the principle of trapped vortices that intrinsically improve the mixing of hot combustion gases with fresh mixture, a characteristic that is essential both to diluted combustion and to Moderate or Intense Low-oxygen Dilution (MILD) combustion.

<h5>Analysing a trapped-vortex approach for syngas combustion in gas turbines</h5>
Analysing a trapped-vortex approach for syngas combustion in gas turbines

Dive deeper

Please login or register to gain access to this contents.

Find out more:

software

ANSYS

Explore Pervasive Engineering Simulation

ANSYS offers a comprehensive software suite that spans the entire range of physics, providing access to virtually any field of engineering simulation that a design process requires

ansys

Read More  

NEWSROOM

Stay connected with our news, analysis and trends from our experts

 

Read More  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

Oil flow simulation in a reciprocating engine at Honda R&D

Particleworks, an innovative particle method simulation tool, playing an important role in previously-unattainable simulation problems

In this technical article, EnginSoft and Prometech explain how they executed a highly complex computational simulation on the fluid-structure interaction of the oil flow inside a reciprocating engine, on behalf of Honda R&D.

automotive cfd particleworks

Read More