Our Expertise | ELECTRICAL & ELECTRONICS

The Fundamental Role of a Simulation-Based Approach in New High-Technology Product Development

Numerical simulation assists in all phases of product development from scoping and costing to final performance analysis

Newsletter EnginSoft Year 10 n°4
By Luigi Paris | Selex-ES
The Fundamental Role of a Simulation-Based Approach in New High-Technology Product Development
The Fundamental Role of a Simulation-Based Approach in New High-Technology Product Development

Abstract

Selex-ES, a Finmechanica company known for its high-technology methods and products, makes extensive use of simulation tools and approaches to design and test leading-edge products. It makes particular use of the Finite Element Method from the beginning to the end of its new product development process, from initial scoping and costing, through the design phases and on to the testing of product performance. In this article, the company describes the business benefits they derive from the different ways they use simulation and provides several examples of just where and how it is used, from the tender process, to technical product design, ongoing product analysis, and also for end-user technical reports.

Read the article

Find out more

CASE STUDY

Simulating tomorrow's future today: Forty years of EnginSoft and counting

The text provides an in-depth account of Stefano Odorizzi’s journey in founding and growing EnginSoft, our engineering company specializing in computer simulation and modelling. Established in 1984, EnginSoft overcame early challenges, such as the high cost of computing, to emerge as a leader in simulation services, particularly in the fields of mechanical engineering and computational fluid dynamics (CFD). The narrative highlights several key milestones in the company’s history.

cfd metal-process-simulation industry4 news mechanics optimization

NEWSROOM

Stay connected with us: news, analysis and trends from our experts.

Newsroom  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars.

Media Center  

CASE STUDY

A method to conduct dynamic analyses of floating solar structures using AQWA

Structural analysis method also considers response characteristics over time

This technical paper presents an analysis process to accurately examine the environmental loads and structural stability of a Floating photovoltaic (PV) power plant. The method includes a hydrodynamic analysis of the Floating PV in its water-based environment as well as a structural analysis of its structural stability based on the characteristics of motion it undergoes.

ansys energy