This technical article presents a simulation process to analyze fatigue in electronic parts, particularly in solder joints, on printed circuit boards (PCBs).
There are three core technologies in the process:
By applying a single frequency response analysis to the FE model of an electronic component containing the substitute FE models, and conducting static analyses of all the solder-joint sub-models, the vibrational solder-joint fatigue can be efficiently calculated in FEMFAT spectral, where the section forces in the pins of the electronic devices are mapped onto the sub-models and scaled by a power spectral density to calculate the damage in all solder joints.
Read the article
CASE STUDY
The object of this study was simulating and optimizing the cold forging process for a silent block bush steel sleeve. A silent block bush is traditionally used in the linkage system of a car suspension, in railway carriages and in agricultural machinery.
metal-process-simulation forge forging automotive