This technical article presents a simulation process to analyze fatigue in electronic parts, particularly in solder joints, on printed circuit boards (PCBs).
There are three core technologies in the process:
By applying a single frequency response analysis to the FE model of an electronic component containing the substitute FE models, and conducting static analyses of all the solder-joint sub-models, the vibrational solder-joint fatigue can be efficiently calculated in FEMFAT spectral, where the section forces in the pins of the electronic devices are mapped onto the sub-models and scaled by a power spectral density to calculate the damage in all solder joints.
Read the articleCASE STUDY
Fatigue design of large welded structures presents significant challenges due to complex geometries and variable loading conditions, especially in industries such as offshore engineering. While nominal stress-based methods remain widely used, they often fall short when applied to intricate welded details. This study investigates the use of MAGNA FEMFAT, a commercial fatigue analysis tool, to evaluate the fatigue strength of large welded K-nodes typically found in small offshore platforms.
marine femfat