Our Expertise | BIOMECHANICS

Optimally designing an artificial lung for extracorporeal life support

A CFD-based approach

Newsletter EnginSoft Year 18 n°2
By Francesco Madonia | LivaNova
Optimally designing an artificial lung for extracorporeal life support
Optimally designing an artificial lung for extracorporeal life support

Abstract

Hollow fiber membrane oxygenators (HFMO), which have been used since the 1950s to provide patients with temporary (up to six hour) oxygen support during a cardiopulmonary bypass (CPB), are today being increasingly used for other therapies, such as acute respiratory distress syndrome (ARDS), and chronic obstructive pulmonary disease (COPB), that can last for up to 20-30 days at a time.

This extended contact time between hollow fiber membranes and blood increases the complications of the natural blood biochemical process of “coagulation”, which diminishes oxygen transfer and increases the pressure drop, ultimately causing the oxygenators to fail. The study described in this article was designed to obtain greater insight into the gas transfer mechanism at microscopic scale using computational fluid dynamics in order to accelerate design exploration to find the optimal solution.

Read the article

Find out more

CASE STUDY

Simulating tomorrow's future today: Forty years of EnginSoft and counting

The text provides an in-depth account of Stefano Odorizzi’s journey in founding and growing EnginSoft, our engineering company specializing in computer simulation and modelling. Established in 1984, EnginSoft overcame early challenges, such as the high cost of computing, to emerge as a leader in simulation services, particularly in the fields of mechanical engineering and computational fluid dynamics (CFD). The narrative highlights several key milestones in the company’s history.

cfd metal-process-simulation industry4 news mechanics optimization

NEWSROOM

Stay connected with us: news, analysis and trends from our experts.

Newsroom  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars.

Media Center  

CASE STUDY

A method to conduct dynamic analyses of floating solar structures using AQWA

Structural analysis method also considers response characteristics over time

This technical paper presents an analysis process to accurately examine the environmental loads and structural stability of a Floating photovoltaic (PV) power plant. The method includes a hydrodynamic analysis of the Floating PV in its water-based environment as well as a structural analysis of its structural stability based on the characteristics of motion it undergoes.

ansys energy