Multi-Objective Optimization of a Sailing Yacht Aluminum Mast

The optimal mast weight under specific structural strength requirements

ABSTRACT

The aim of this study was to reduce the weight of the world’s tallest aluminum mast for a new series of single mast sailing yachts manufactured by Perini Navi under the brand name Salute. The planned mast had a length of 140 to 168 feet (50 to 60 meters) high and needed to account for all the requirements related to structural instability, in order to ensure the best performance under operational conditions. As a result of our virtual optimization, the weight of the mast was reduced by around 20% with respect to the original specifications.

The objective was to find the optimal mast weight under specific structural strength requirements to avoid global and local buckling. The mast weight reduction and the parametric modeling allowed the evaluation of a correlated reduction of keel weight needed for counter balance. The keel and rudder lines were modified to improve the yacht’s stability in keeping with the higher center of gravity resulting from the tall mast.

<h5>The Perini Navi's Salute single-mast sailing yachts line</h5>
The Perini Navi's Salute single-mast sailing yachts line

Dive deeper

Please login or register to gain access to this contents.

Find out more:

software

modeFRONTIER

The innovative integration platform for multi-objective and multi-disciplinary optimization

modeFRONTIER provides a seamless coupling with third party engineering tools, enables the automation of the design simulation process, and facilitates analytic decision making.

modefrontier optimization

Read More  

NEWSROOM

Stay connected with our news, analysis and trends from our experts

 

Read More  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

CFD analysis for the evaluation of the air flow within a climate control unit

Considering the value of numerical analysis for new product design

The objective of the study was to create a virtual model of Climaveneta’s new ACU171 Expanded Close Control Unit and then match the numerical results with the experimental measures.

cfd ansys appliances

Read More