Our Expertise | CIVIL ENGINEERING

ME Elecmetal harnesses power of Rocky DEM to improve crusher liner performance

Newsletter EnginSoft Year 17 n°2
By Silvia Carina Firmino | ESSS
ME Elecmetal harnesses power of Rocky DEM to improve crusher liner performance
ME Elecmetal harnesses power of Rocky DEM to improve crusher liner performance

Abstract

When it comes to cars, people tend to focus on driving performance and safety. However, one should not forget about the air conditioning system, which plays a crucial role in enabling a comfortable ride over long periods, even in extremely hot or cold weather conditions or in heavy rain. There was a time when air conditioning in cars, which we now take for granted, was a luxury only found in expensive cars. After years of development and innovation, all vehicles today are equipped with air conditioning systems. However, the design of such systems is not simple since they operate at full capacity in all weather conditions.

As with the vehicle body and various other automotive parts, it is necessary to evaluate the system’s performance through experiments that assume driving under real weather conditions and through simulations using CAE. This article introduces a case study on the waterproofing of an automotive air conditioning system for rainy conditions using Particleworks, a particle method CFD software.

Read the article

Find out more

software

Particleworks

An advanced CFD Software solution, based on the Moving Particle Simulation (MPS) method

Particleworks is an advanced CFD Software solution, based on the Moving Particle Simulation (MPS) method.

particleworks

NEWSROOM

Stay connected with us: news, analysis and trends from our experts.

Newsroom  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars.

Media Center  

CASE STUDY

Two-step approach to numerical simulation of fire and smoke propagation

Early stage use in design aids fire protection assessment of buildings and evacuation routes faster and more cost effectively

This article explains how the simulation of a severe fire in a warehouse that had caused substantial damage was undertaken. It explores the use of the fire dynamics simulator (FDS) code, developed by the US National Institute of Standards and Technology (NIST)

civil-engineering