This technical article describes a numerical (transient computational fluid dynamics) simulation applied to study the suction efficiency of a canopy hood in a steel
plant’s electric arc furnace with a view to increasing it.
A base case was simulated first after which various geometrical and event modifications were simulated in an optimization loop to identify the best potential geometry to
increase the capture of dust from the environment. A standard post-processing procedure was created to easily compare the different cases.
The CFD approach was shown to be highly relevant to shorten time to market and reduce the amount of solution testing required.
The aim of this study was the quantitative and qualitative characterization of an existing canopy hood configuration for use in a steel plant. The dust extraction in the current device did not seem optimal. Possible improvements that targeted a dust capture efficiency of 90% were studied using the Ansys Fluent computational fluid dynamics (CFD) code.
Read the articleCASE STUDY
The text provides an in-depth account of Stefano Odorizzi’s journey in founding and growing EnginSoft, our engineering company specializing in computer simulation and modelling. Established in 1984, EnginSoft overcame early challenges, such as the high cost of computing, to emerge as a leader in simulation services, particularly in the fields of mechanical engineering and computational fluid dynamics (CFD). The narrative highlights several key milestones in the company’s history.
cfd metal-process-simulation industry4 news mechanics optimization

CASE STUDY
In this technical article, the authors discuss the development of CAE models for simulating the behavior of shaped charges, devices used in various industrial sectors, against two types of target – a monolithic steel target and a multi-layer steel-ceramic target – in order to better understand the physics of penetration.
ansys ls-dyna civil-engineering mechanics oil-gas