To increase the possibilities for humans to explore space, the development of bio-regenerative life support systems is essential: these systems must fulfil all human needs to sustain a sufficient living condition. In this contest, a greenhouse module is the fundamental part of every concept for a stable and independent base in future space missions. Indeed a greenhouse can (re-)generate essential resources for humans by closing different loops within a habitat, like waste water recycling, CO2 reduction, food and O2 production.
Following this aim this feasibility study has been carried out to investigate and develop the characteristics of a greenhouse module for a future lunar base. This project has been coordinated by the German Aerospace Center (DLR) and it is embedded in the MELiSSA framework of ESA research projects.
Read the article
CASE STUDY
This technical article describes how high-end numerical Computational Fluid Dynamics (CFD) simulations were applied to mimic the realistic operating conditions of a Ventricular Assist Device (VADs) and analyze its hemodynamics in order to identify potential areas for optimization of the device’s performance, safety and efficacy.
ansys cfd biomechanics