Our Expertise | AEROSPACE

Greenhouse Module for Space System

This feasibility study has been carried out to investigate and develop the characteristics of a greenhouse module for a future lunar base

Newsletter EnginSoft Year 12 n°3
By Lorenzo Bucchieri, Erik Mazzoleni | EnginSoft
Greenhouse Module for Space System
Greenhouse Module for Space System

Abstract

To increase the possibilities for humans to explore space, the development of bio-regenerative life support systems is essential: these systems must fulfil all human needs to sustain a sufficient living condition. In this contest, a greenhouse module is the fundamental part of every concept for a stable and independent base in future space missions. Indeed a greenhouse can (re-)generate essential resources for humans by closing different loops within a habitat, like waste water recycling, CO2 reduction, food and O2 production.

Following this aim this feasibility study has been carried out to investigate and develop the characteristics of a greenhouse module for a future lunar base. This project has been coordinated by the German Aerospace Center (DLR) and it is embedded in the MELiSSA framework of ESA research projects.

Read the article

Find out more

Research project

EDEN ISS

Ground Demonstration of Plant Cultivation Technologies and Operation in Space

The aim of EDEN ISS is to identify operation procedures for safe food production in space through adaptation, integration and demonstration of higher plant cultivation techniques.

NEWSROOM

Stay connected with us: news, analysis and trends from our experts.

Newsroom  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars.

Media Center  

CASE STUDY

CFD Characterization of the Ventricular Assist Device HeartAssist 5® Through a Sliding Mesh Approach

Analysis to determine possible optimizations to enhance device safety and efficacy for long-term patient use

This technical article describes how high-end numerical Computational Fluid Dynamics (CFD) simulations were applied to mimic the realistic operating conditions of a Ventricular Assist Device (VADs) and analyze its hemodynamics in order to identify potential areas for optimization of the device’s performance, safety and efficacy.

ansys cfd biomechanics