Comparison of casting simulation results and experimental data in heavy section ductile iron production

Aims to provide accurate information on cooling curves, microstructures and mechanical properties of large items for generic commercial uses

ABSTRACT

Due to its excellent mechanical properties and castability, ductile iron is one of the most used materials in critical engineering applications today – from wind turbines, to gas and steam turbines, nuclear waste storage, big engine blocks and hydraulic presses. Design engineers however require consistent reliable data on the mechanical properties and microstructure, as well as how these change within the item itself. Casting simulation is a helpful, effective tool for designers to investigate the influence that casting processes are likely to have on material strength. Concurrent Engineering, which sees this knowledge being shared between design and manufacturing engineering, plays an important role in the design of heavy ductile iron casting components, which are widely distributed in microstructures, and on the mechanical properties of the items themselves. Since this is a complex measurement, very few studies have compared simulated results and experimental data for long solidification times. There is also limited research that focuses on the prediction of the probable microstructure and the mechanical properties of large items that require lengthy solidification times and where huge segregation can have an important impact. In addition, most of the existing studies are based on specific geometries that are difficult to transfer to generic commercial items. This technical article discusses a comparison study of simulated results and experimental data on the cooling curves, the microstructure and the mechanical properties inside a general commercial ductile iron casting.

<p>Study to compare casting simulation results with experimental data for a heavy section, ductile iron casting</p>

Study to compare casting simulation results with experimental data for a heavy section, ductile iron casting

<p> Fig. 1 - Geometry of the casting (gray) and the appendix (red)</p>

Fig. 1 - Geometry of the casting (gray) and the appendix (red)

Dive deeper

Please login or register to gain access to this contents.

Find out more:

software

Magma

Simulation and virtual optimization of casting processes

MAGMASOFT® is the comprehensive and effective optimization tool for improving metalcasting quality, optimizing process conditions and reducing production costs.

magma metal-process-simulation

Read More  

NEWSROOM

Stay connected with our news, analysis and trends from our experts

 

Read More  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

Ring Rolling of a Wind Tower Flange

A tool to reduce the level of post manufacturing defects, material wastage and overall production costs

An academic study of the hot ring rolling process at ASFO Spa, that it ended with the company using Transvalor Forge as a tool to reduce the level of post manufacturing defects, material wastage and overall production costs

energy forge metal-process-simulation

Read More