Our Expertise | MECHANICS

Comparison of casting simulation results and experimental data in heavy section ductile iron production

Aims to provide accurate information on cooling curves, microstructures and mechanical properties of large items for generic commercial uses

Newsletter EnginSoft Year 12 n°4
By Giacomo Bertuzzi | SACMI Imola
Giampietro Scarpa | EnginSoft
Study to compare casting simulation results with experimental data for a heavy section, ductile iron casting
Study to compare casting simulation results with experimental data for a heavy section, ductile iron casting

Abstract

Due to its excellent mechanical properties and castability, ductile iron is one of the most used materials in critical engineering applications today – from wind turbines, to gas and steam turbines, nuclear waste storage, big engine blocks and hydraulic presses. Design engineers however require consistent reliable data on the mechanical properties and microstructure, as well as how these change within the item itself. Casting simulation is a helpful, effective tool for designers to investigate the influence that casting processes are likely to have on material strength. Concurrent Engineering, which sees this knowledge being shared between design and manufacturing engineering, plays an important role in the design of heavy ductile iron casting components, which are widely distributed in microstructures, and on the mechanical properties of the items themselves. Since this is a complex measurement, very few studies have compared simulated results and experimental data for long solidification times. There is also limited research that focuses on the prediction of the probable microstructure and the mechanical properties of large items that require lengthy solidification times and where huge segregation can have an important impact. In addition, most of the existing studies are based on specific geometries that are difficult to transfer to generic commercial items. This technical article discusses a comparison study of simulated results and experimental data on the cooling curves, the microstructure and the mechanical properties inside a general commercial ductile iron casting.

Read the article

Find out more

software

Magma

Simulation and virtual optimization of casting processes

MAGMASOFT® is the comprehensive and effective optimization tool for improving metalcasting quality, optimizing process conditions and reducing production costs.

magma metal-process-simulation

NEWSROOM

Stay connected with us: news, analysis and trends from our experts.

Newsroom  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars.

Media Center  

CASE STUDY

Comparative analysis of temperature control systems for high pressure die casting dies

Numerical methods for the thermal analysis of the HPDC process are needed to shorten the cost, the design and production time and the samples to involve in finding acceptable operating conditions.

In High Pressure Die Casting production it is necessary to keep the die temperature within a certain specified range

die-casting magma metal-process-simulation