Our Expertise | BIOMECHANICS

CFD Characterization of the Ventricular Assist Device HeartAssist 5® Through a Sliding Mesh Approach

Analysis to determine possible optimizations to enhance device safety and efficacy for long-term patient use

Newsletter EnginSoft Year 13 n°1
By Alessandra Pelosi | EnginSoft
<p>Numerical simulation of the hemodynamics of the HeartAssist 5® Ventricular Assist Device</p>

Numerical simulation of the hemodynamics of the HeartAssist 5® Ventricular Assist Device

Abstract

Cardiovascular diseases are recognized as the main cause of death worldwide, primarily related to heart failure. Owing to insufficient amount of eligible organs for heart transplant annually, various mechanical circulatory support devices as ventricular assist devices (VAD) and total artificial hearts have been developed and introduced in the market. VAD utilization as a mean of stabilizing congestive heart failure patients or as a bridge-to-transplant has increased dramatically over the past few years. In particular, rotary VADs offer the advantages of smaller dimension and simpler structures with respect to pulsatile VADs; however the continuous high-speed rotating blood flow patterns generated are a potential risk factor for adverse events, including thrombus formation, thromboembolic complications and device malfunction. Pump thrombosis is one of the main causes for device malfunction, and patients are exposed to the risk of sudden death or the risks involved in complex device replacement surgery.

Read the article

Find out more

CASE STUDY

Simulation-Based Engineering Science: a heritage to cherish and invest in for a sustainable future

The adoption of SBES has significantly increased in the last two decades, driven by advancements in computing technology and the rise of Industry 4.0, which promotes nine key enabling technologies, including engineering simulation and big data analytics. SBES is crucial for the integration and automation of production systems, improving flexibility, speed, and quality.

automotive construction energy cfd metal-process-simulation

NEWSROOM

Stay connected with us: news, analysis and trends from our experts.

Newsroom  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars.

Media Center  

CASE STUDY

High Quality Printing with CFD

Simulation allows engineers to improve print quality, ensure operator safety and contain energy consumption

In this article, Uteco describes how it applied Computational Fluid Dynamics (CFD) to assist the design and improvement of its printing machines.

cfd ansys mechanics