CFD Characterization of the Ventricular Assist Device HeartAssist 5® Through a Sliding Mesh Approach

Analysis to determine possible optimizations to enhance device safety and efficacy for long-term patient use

ABSTRACT

This technical article describes how high-end numerical Computational Fluid Dynamics (CFD) simulations were applied to mimic the realistic operating conditions of a Ventricular Assist Device (VADs) and analyze its hemodynamics in order to identify potential areas for optimization of the device’s performance, safety and efficacy. VADs are increasingly used to mitigate the shortfall in donor organs for cardiopathic patients awaiting heart transplants annually by providing a bridge-to-transplant, or to stabilize patients with congestive heart failure. While rotary VADs have smaller dimensions and simpler structures than pulsatile VADs, their continuous, high-speed, rotating blood-flow patterns represent a potential risk factor to patients from thrombus formation, thromboembolic complications or device malfunction due to pump thrombosis. Consequently, patients risk sudden death or having to face the risks of complex device-replacement surgery. Optimization of these devices could save lives and improve quality of life for cardiopathic patients likely to face long-term therapy.

<p>Numerical simulation of the hemodynamics of the HeartAssist 5® Ventricular Assist Device</p>

Numerical simulation of the hemodynamics of the HeartAssist 5® Ventricular Assist Device

Dive deeper

Please login or register to gain access to this contents.

Find out more:

software

ANSYS

Explore Pervasive Engineering Simulation

ANSYS offers a comprehensive software suite that spans the entire range of physics, providing access to virtually any field of engineering simulation that a design process requires

ansys

Read More  

NEWSROOM

Stay connected with our news, analysis and trends from our experts

 

Read More  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

Cooling fan module road test simulation

For engine cooling, Johnson Electric offers smart Cooling Fan Modules (CFM) with best in class efficiency and power density

ptimization of the product starts with a strong correlation of the model with specifically designed tests under controlled conditions.

ansys automotive

Read More