Case study: modelling the flame height of a regeneration gas heater

Using CFD analysis to save time and money in designing and testing industrial burners for the oil and gas industry


Many industries make use of burners to meet their needs for thermal energy. The design of burners and the related heat transfer equipment must, by necessity, fulfil stringent safety requirements – both to keep operators and staff safe and to avoid damage to equipment. In the oil and gas industry, some design practices dictate the maximum flame height in relation to the size of the radiant chamber for fired equipment. The flame length then usually undergoes dedicated firing tests. In this technical case study, EnginSoft was called in to assist in the application of Computational Fluid Dynamics (CFD) to model the flame size of a regeneration gas-fired heater for a project in Oman.

The aim of the test was to determine the burner’s flame height in three different operating conditions. A numerical simulation was used because of the difficulties of undergoing physical burn testing. It also saved the design team time and money in the design and testing process.

<h5>Case study: modelling the flame height of a regeneration gas heater </h5>
Case study: modelling the flame height of a regeneration gas heater

Dive deeper

Please login or register to gain access to this contents.

Find out more:



Explore Pervasive Engineering Simulation

ANSYS offers a comprehensive software suite that spans the entire range of physics, providing access to virtually any field of engineering simulation that a design process requires


Read More  


Stay connected with our news, analysis and trends from our experts


Read More  


Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  


Shape Rolling of a European Standard Beam IPE Profile

A pilot study carried out by engineers from EnginSoft and Beltrame

The study allowed the engineers to estimate the shape profile geometry after each roll pass, the rolls wear and the total load and point at which the beam will bend in off-center setups.

construction metal-process-simulation forge mechanics

Read More