Taking multi-stage steam turbine design beyond the barrier of perfection

Optimization Case study of a multi-stage steam turbine designed by Franco Tosi Meccanica

ABSTRACT

This case study details the design optimization of an axial steam turbine of 160 MW, focusing on maximizing the total-to-total isentropic efficiency of the last three low-pressure stages of the turbine. Specifically, the engineers considered the shape and angle of the blades. After more than one century of development, it is the advances in blade design that have contributed to improved steam turbine thermal efficiency. Since modern turbines already reach efficiency values beyond 90%, extracting any further improvement is a very challenging task. The engineers used a combination of three engineering approaches for this study to accomplish this: traditional trial-and-error, virtual optimization and direct optimization. The final verification of the steam turbine after the optimization, achieved an isentropic total-to-total efficiency gain of about 0.5% -- a small but vital improvement in today’s highly competitive, highly regulated market.

<h5>Franco Tosi Meccanica SpA</h5>
Franco Tosi Meccanica SpA

Dive deeper

Please login or register to gain access to this contents.

Find out more:

software

ANSYS

Explore Pervasive Engineering Simulation

ANSYS offers a comprehensive software suite that spans the entire range of physics, providing access to virtually any field of engineering simulation that a design process requires

ansys

Read More  

NEWSROOM

Stay connected with our news, analysis and trends from our experts

 

Read More  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

Structural optimization of a bridge beam section subjected to instability of equilibrium

CAE and numeric simulation guides engineers to an optimal design for structural safety at the lowest cost

This technical article describes how engineers tackled a design optimization challenge to ensure the structural integrity of a section of the beam of a typical steel bridge whose web of main beams was subject to instability.

civil-engineering modefrontier optimization

Read More