Our Expertise | AEROSPACE

A CAE based procedure to predict the low velocity impact response of a composite CAI specimen

The integrated procedure allowed to obtain a better understanding of the influence of some numerical parameters on the simulation results

Newsletter EnginSoft Year 10 n°4
By Rosario Borrelli, Stefania Franchitti, Francesco Di Caprio, Umberto Mercurio - Italian Aerospace Research Centre | Vito Primavera, Marco Perillo - EnginSoft
<p>A CAE based procedure to predict the low velocity impact response of a composite CAI specimen </p>

A CAE based procedure to predict the low velocity impact response of a composite CAI specimen

Abstract

The residual strength, in particular the compression strength after damage due to low velocity impact, is one of the most critical issue for composite laminates. Indeed, composite structures submitted to low energy impacts reveal a brittle behavior and can undergo significant damage in terms of matrix cracks, fiber breakages and delaminations. Such damage is particularly dangerous because it may be undetectable by visual inspection and can drastically reduce the pristine mechanical characteristics of the structure. Generally the behavior of composite materials with respect to this issue is experimentally evaluated by the standard CAI (Compression After Impact) test. For this reason, in order to simulate the impact event, an LS-DYNA FE model of this test was developed and coupled with modeFRONTIER. The integrated procedure allowed to obtain a better understanding of the influence of some numerical parameters on the simulation results (sensitivity analysis), moreover the configuration which provided the best agreement with the experimental data (optimization analysis) was computed.

Read the article

Find out more

CASE STUDY

Simulation-Based Engineering Science: a heritage to cherish and invest in for a sustainable future

The adoption of SBES has significantly increased in the last two decades, driven by advancements in computing technology and the rise of Industry 4.0, which promotes nine key enabling technologies, including engineering simulation and big data analytics. SBES is crucial for the integration and automation of production systems, improving flexibility, speed, and quality.

automotive construction energy cfd metal-process-simulation

NEWSROOM

Stay connected with us: news, analysis and trends from our experts.

Newsroom  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars.

Media Center  

CASE STUDY

Calibration of the Johnson-Cook plasticity for high strain rate regime applications

Material models used in structural finite element analysis (FEA) are often one of the key aspects that engineers need to describe very accurately.

optimization modefrontier ls-dyna