TwinMesh

TwinMesh

A revolutionary meshing solution for reliable CFD analysis of rotary positive displacement machines

TwinMesh

TwinMesh is a product of CFX Berlin Software GmbH.

Thanks to TwinMesh software, computational fluid dynamics (CFD) has become an efficient development tool for the first time also for manufacturers of rotary positive displacement machines.

An important prerequisite for reliable CFD simulations, is the creation of high-quality meshes that mimic the computational domain as precisely as possible, without increasing too much the model number of elements.

The creation of such computational domain poses two significant challenges for engineers when working with rotary pumps, gear pumps and screw compressors. The complexity of the geometry of rotary positive displacement machines results from the flow volumes in the working chambers which vary over time. The second challenge are the extremely small gaps between the rotors and between the rotors and the housing.

With the help of meshing software TwinMesh, the time-varying flow volumes and gaps in the working space of volumetric machines can be automatically meshed with high-quality structured hexahedral meshes, for a number of angular positions specified by the user. By using a smoothing algorithm contained in TwinMesh, the node distributions always remain homogeneous, and the interior element angle remains nearly orthogonal.

TwinMesh provides also special templates for all typical displacement machines, taking care of the actual simulation setup, monitoring and post-processing in ANSYS CFX simply pressing a button.

CFD mesh and transient simulation of an external gear pump

Main benefits

Request a free demo

  Enabling technology for CFD simulation of rotary positive displacement machines (RPDM)

  Significantly reduce user effort and CPU time for the simulation of RPDM

  Best technology and practices implemented for fast, reliable and efficient simulation

  Accurate and reliable product durability, performance and efficiency prediction

  Drive real innovation and optimization of rotary positive displacement machines

Ask the Expert

Ask the expert

Send your technical questions to our experts!
Connect you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Ask the expert Request a free demo

Insights

CASE STUDY

Multiphase CFD Analysis of Condensation in Automotive Headlamps

A new 3D CFD multi-phase model to simulate the water condensation-evaporation processes

EnginSoft implemented a new 3D CFD multi-phase model to simulate the water condensation-evaporation processes inside automotive headlamps for Automotive Lighting, a leading supplier of quality headlights to the OEM market

automotive cfd ansys rail-transport

NEWSROOM

Stay connected with us: news, analysis and trends from our experts.

Newsroom  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars.

Media Center  

CASE STUDY

Oil flow simulation in a reciprocating engine at Honda R&D

Particleworks, an innovative particle method simulation tool, playing an important role in previously-unattainable simulation problems

In this technical article, EnginSoft and Prometech explain how they executed a highly complex computational simulation on the fluid-structure interaction of the oil flow inside a reciprocating engine, on behalf of Honda R&D.

automotive cfd particleworks

Find out more

Our competences in TwinMesh

CASE STUDY

Transient CFD Analysis of a Pelton Turbine

The performance evaluation to upgrade an existing hydropower plant

EnginSoft developed a Computational Fluid Dynamic (CFD) analysis methodology for the performance evaluation of a Pelton turbine

energy cfd ansys oil-gas

CASE STUDY

A History of Vortices

Detecting and mitigating critical flow structures in water pumping stations is a complex engineering task, that has always been based on experimental activities.

GE Power is a world leading supplier of solutions for power generation, from engineering to manufacturing. Detecting and mitigating critical flow structures in water pumping stations is a complex engineering task, that has always been based on experimental activities. Now GE Power can rely also on CFD modelling and on the support of EnginSoft

ansys cfd energy

CASE STUDY

Drag Optimization of the E-1 Electric Racecar

A FIA E-1 class racecar was being developed by Brigham Young University to set a world speed record for Electric Vehicles

The car is designed to race on the ultra-flat Salt Flats in Bonneville, Utah. The racecar weighs less than 500kg so increasing the downforce was critical. Reducing aerodynamic drag was also critical due to the power requirements of the racecar.

cfd automotive