CMAS | Cybernet Multiscale Analysis System

A new tool for ANSYS that facilitates materials testing and microscopic analysis of composite materials

The multiscale analysis technique is designed to overcome complex materials problems. Using this technique, all material constants can be evaluated without expensive experimental campaigns. Cybernet Systems Co. has developed a multiscale analysis CAE tool called the “Cybernet Multiscale Analysis System” (CMAS). Cybernet Systems’ CMAS has been embedded in the ANSYS Workbench GUI using the ANSYS Customization Toolkit (ACT) techniques, making it very easy to use and allowing it to offer leading high-performance productivity for ANSYS Workbench users. The CMAS tool can help engineers to resolve challenges around materials modeling and characterization. Using the two functions of homogenization and localization analyses (Figure 1) makes it possible to perform a multiscale analysis of the inhomogeneous material microstructure of a composite material, such as fiber-reinforced plastic or metal, honeycomb, filler dispersion, lattice structures, and so on. Material property values are calculated by numerical material test of micro structure without material tests that were required conventionally. The results enable prediction of the macroscopic behaviour by the macro structural analysis. Further, it is possible to predict the microscopic behaviour by going back to the micro structure analysis again.

CMAS is a product of Cybernet Systems Co.

Cybernet Multiscale Analysis System features overview
CMAS | Convert the Power of New Materials into the Power of Development Estimate Material Properties for Added Value

Example of cells templates

Main Benefits

  Development of multiscale material models using homogenization and localization analyses

  Improves product performance and reduces product development time

  Development of numerical material testing

  Possibility to make parametric studies

  Development of new composite material structures

  Possibility to execute Linear and Non linear analyses (with different license versions)

  Built-in parametric unit cells (e.g. unidirectional, woven, chopped, etc.) Possibility to develop User-Defined unit cells

  Efficient and detailed multiscale tool, full integrated with ANSYS Multiphysics platform (ANSYS Workbench and ANSYS Mechanical APDL)

  Boost design process

  Improve product design

  Improve productivity and quality

  Reduce time to market

  Reduce real material testing cost and resources

Request a free demo

 

Product brochure

  Download the brochure

Send your technical questions to our experts!

Ask an Expert connects you with an EnginSoft expert who can provide a reliable answer to your technical question or recommend a proven solution.

Ask the expert

Insights

CASE STUDY

Cold Forging of a Silent Block Bush Steel Sleeve

Minimize physical prototypes and reduce waste, while reducing the lead time and overall production costs

The object of this study was simulating and optimizing the cold forging process for a silent block bush steel sleeve. A silent block bush is traditionally used in the linkage system of a car suspension, in railway carriages and in agricultural machinery.

metal-process-simulation forge forging automotive

Read More  

NEWSROOM

Stay connected with our news, analysis and trends from our experts

 

Read more  

MEDIA CENTER

Scroll through our Media Center to view all the videos, video-tutorials and recorded webinars

Media Center  

CASE STUDY

Cost Effective High- Performance Design: Innovation is the Answer

Marelli Motori applies multiphysics simulation to cost-effectively design better, more reliable motors and generators faster

Improving efficiency while reducing cost is a very complex engineering challenge. Marelli Motori makes extensive use of CFD and FEM multiphysics simulation to do just that in the design of its electrical motors and generators.

ansys automotive cfd

Read More  

Find out more

Our Expertise with CMAS | Cybernet Multiscale Analysis System

CASE STUDY

FE modeling of a composite sandwich laminate with LS-DYNA for Aerospace applications

Laminated composite materials such as sandwich structures are widely used in the transportation industry

This project investigates how best to correctly predict the energy absorption of these non-isotropic and non-homogeneous materials, whose lamina thickness is typically of the order of 0.2 mm or less and consists of tiny fibers or particles dispersed in a matrix material.

ls-dyna aerospace composites

Read More  

CASE STUDY

Drag Optimization of the E-1 Electric Racecar

A FIA E-1 class racecar was being developed by Brigham Young University to set a world speed record for Electric Vehicles

The car is designed to race on the ultra-flat Salt Flats in Bonneville, Utah. The racecar weighs less than 500kg so increasing the downforce was critical. Reducing aerodynamic drag was also critical due to the power requirements of the racecar.

cfd automotive

Read More  

CASE STUDY

Excavators

The influence of flexibility was considered with the use of both the Reduced Flex and the Full Flex options in RecurDyn

A multibody model of an excavator was developed to calculate the loads acting on the structure and to perform static structural verifications of the different components.

automotive multibody recurdyn mechanics

Read More