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The development of sustainable production systems focuses 
on minimizing production costs, increasing productivity, and 
improving product quality. It is universally acknowledged that digital 
transformation is one of the central themes of Smart Manufacturing 
and a necessary condition by which companies can differentiate 
themselves from competitors in low-cost countries. Moreover, highly 
flexible digital systems maintain production efficiency despite extreme 
variability in demand, and simultaneously enable a reduction in scrap 
and energy consumption. With this in mind, it is necessary to develop 
integrated methodologies, technologies, and tools for process 
control, improved maintenance, intelligent quality management, and 
production logistics.Against this background the new data-driven 
digital twin architecture of a multi-stage production system such as 
high pressure die casting (HPDC) interconnects all stages and their 
peripherals. The aim is to improve product quality towards zero defect 
manufacturing (ZDM) by monitoring a plant and its sub-areas to 
increase reliability at reduced production and maintenance costs. 

Recent applications in die casting foundries highlight the expected 
impacts with feedback from months of production line data acquisition 
and management. Key elements are the flexible management of alarms 
and alerts as well as real-time processing of KPIs related to overall 
equipment effectiveness (OEE) and production costs. The project 
realized at RDS Moulding Technology underlines that digitalization in 
the foundry is an enabler for small and large companies. This article 
describes the design of a new sensorized mould for the production of 
Siemens gearmotor housings and the implementation of an intelligent 
monitoring system supported by a predictive quality model created 
through instructive sampling.

The results refer to the PreMANI project ‘PREDICTIVE 
MANUFACTURING: design, development and implementation of 
Digital Manufacturing solutions for Quality prediction and Intelligent 
Maintenance’, supported by the Veneto Region with the POR FESR 

2014-2020 programme, coordinated in collaboration by the 
innovative regional networks IMPROVENET and SINFONET that 
combine industrial Internet of things (IIoT) and cyber physical system 
(CPS) expertise with process management and quality control along 
the foundry production chain.

The Smart factory and the digital twin
The Smart Manufacturing Operations Planning and Control Programme 
develops and implements advances in measurement science that 
enable standards for performance, quality, interoperability, wireless 
and cybersecurity in real-time prognostics and health monitoring, the 
control, and optimization of smart manufacturing systems (source: 
NIST). A Smart Factory is a complex manufacturing ecosystem where 
the convergence of ICT and operational technologies and skills drive 
digital transformation. Two challenges are emerging: the convergence 
of IT and operational technology systems and the broadening of the 
range of competencies and skills needed to drive the transformation, 
including cross-functional competencies, soft skills, and digital talent. 
The next frontier is production system efficiency rather than labour 
productivity. Secure data, real-time interactions, and connections 
between the physical and virtual worlds will make the difference: enter 
the digital twin (DT). 

To unlock the full potential of the smart factory, organizations must 
design and implement a strong governance program and develop a 
culture of data-driven processes to make better decisions based on 
available, reliable, and meaningful data.

Advanced digital solutions and key enabling technologies must be 
constantly focused on solving the problems of the manufacturing 
sector, which can only return to competitiveness through:
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	z increasing efficiency, 
	z reducing time-to-market, 
	z minimizing costs, and 
	z increasing quality of products and 

services.

A data-driven digital twin of the 
production line
OEM specifications or supplier quality 
requirements partially drive product 
production, missing the opportunity to monitor 
the process and quality of any component 
at any stage and to react appropriately at 
the next stage to minimize scrap and time-
to-market, while also reducing the cost of 
the final product. In complex production 
processes human input still plays a key role, 
mainly in supervising production KPIs and 
making improvement decisions. This could 
change as soon as effective applications of 
artificial intelligence enable truly automatic 
reconfiguration of the production system.

There are three levels of digital twin (DT): 
(1) data-driven, (2) system modelling, and 
(3) simulation-powered. This paper focuses 
on the first category (Fig. 1). All of them 
consider the three elements of real and virtual 
connections and human interaction. 

The data-driven digital twin (DD-DT) has the 
macro-objective of continuously combining 
production efficiency (and stability) and 
better quality, to be achieved through 
digitalized production process monitoring, 
the interconnection of quality control and 
all associated data along the production 
chain, and the implementation of intelligent 
algorithms for quality prediction when total 
quality inspection is not sustainable. Often the 
two goals of production efficiency and better 

quality are at odds because intensive and 
rapid utilization of equipment can generate 
more breakdowns and production stoppages 
while better quality is only achieved with an 
optimized setup at each stage of the production 
line. The identification of the optimal setting 
is no guarantee of stable quality because 
the actual production environment (e.g. raw 
materials, machine, workpieces, equipment, 
etc.) experiences deviations in performance 
and time due to the dynamic behaviour of the 
production line. Degradation of equipment 
and/or machines and devices, as well as 
seasonal variations in the environment and 
environmental effects, generate instabilities 
in real production performance leading to 
stoppages and breakdowns.
More specifically, the DD-DT of the production 
line is based on three key elements: the 
monitoring platform, the data pool, and the 
cognitive system (Fig.2). 

The monitoring platform is based on the 
information provided directly by the production 
process and its component devices, but also 
by advanced sensors applied to the process 
itself, which primarily enable the continuous 
monitoring of the recording of the evolution 
of all variables during each production cycle 
in order to identify all deviations from the 
optimal setting. Process stability means 
quality stability in production. At the same 
time, the cost estimate of the design and 
industrialization phases can be confirmed 
reliably and with process stability. Cost-
benefit analysis is improved by introducing 
the cost model and linking it to the most 
relevant production parameters to verify the 
cost of the part number in real time. 

The application of a control and cognitive 
system in complex production lines is not 
new in the factory [3-5]. The first applications 

Fig. 1. The Digital Twin: (1) data-driven, (2) system modelling, and (3) simulation-powered.

Fig. 2. Process monitoring and real-time data processing.
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were in foundry and plastic injection moulding. Today, interoperability, 
flexibility and scalability are key elements driving innovation in the 
DD-DT starting from the ICT architecture. From the factory floor to 
the DT, the new ICT architecture activates connectivity between each 
manufacturer or end-user to collect data describing every stop of 
the production process along the production chain. Data collection 
is based on the OPC unified architecture (OPC-UA) protocol at the 
level of PLCs (programmable logic controllers) on the factory floor. 
The new solution is inspired by the Reference Architecture Model 
for Industrie 4.0 (RAMI) architecture with reference to the assets, 
integration, communication, information, functional, organizational 
and business processes.

The challenge of bringing production to zero defects requires the 
ability to manage the complexity of the process: identify key process 
variables, understand the variable-defect (cause-effect) relationship, 
implement sensors that can capture variables in real time, and in-
depth process analysis and knowledge. Integrated virtual tools are the 
building blocks of the new control and cognitive platform. The rapid 
reconfiguration of the process for zero-defect production is supported 
by a deeper understanding of cause and effect based on a large and 
extensive amount of data from virtual and real process exploration.

High pressure die casting sector
In the smart factory scenario high pressure die casting (HPDC) of light 
alloys, a strategic industry for the EU, is one of the most representative 
large-scale production lines in the manufacturing sector in which it is 
possible to monitor production events with adequate precision. The 
process is executed by a special machine that manages a multitude 
of process parameters (cycle time, piston speed, mould and melt 
temperature, etc.). HPDC process production is one of the most 
‘defect-generating’ and ‘energy consuming’ processes in EU industry. 
This sustainability issue requires machines and peripheral devices 
to be able to efficiently and ecologically support production with 
higher quality, faster delivery times, and shorter lead times between 
successive generations of products. 

Lack of quality significantly affects the cost of transformation, and 
defects are often detected long after production, without taking real-
time, corrective actions based on a continuous learning model that 
links process data input to potential defects. The real limitations on 
the HPDC industry are the continuously increasing costs that reduce 
efficiency and minimize the impact of innovations and development. 
Furthermore, standard products such as gearboxes and motor blocks 
will soon be replaced by large thin parts required for electro-mobility. 
These parts are extremely difficult to produce reliably with high quality 
and represent a challenge for the HPDC industry.

The new DD-DT platform covers the full HPDC production chain from 
material processing to the final product. The major limitation is the 
acquisition of data from each stage, as well as the corresponding 
digitalization and classification of defects.
HPDC is a typical production process that suffers greatly from the 
problem of low yields. It generates defects of various kinds and types 

with an average rejection level of 10%. These defects are classified 
in CEN TR 16749 [2], considering a three-level approach. A survey 
of EU HPDC foundries found that most foundries quantify defects by 
considering gas/air porosity (70.9%) or shrinkage (56.4%) using 
X-ray inspection (in the range of 70-80% of cases). However, in 
certain situations these types of defects in castings can be accepted 
if they fall within a previously identified threshold (in this case, 
and according to the EN 12258-1 definition, they are considered 
‘imperfections’ instead of ‘defects’).

The foundry use case
A gearmotor housing was selected as a use case in which to apply all 
the advanced and innovative solutions for optimizing and monitoring 
the HPDC process. The housing is produced from a net-shaped 
geometry with one part per die and assembled into an electric motor 
for various applications such as escalators (Fig. 3). 
The die and related process parameters was optimized using the 
casting simulation tool (MAGMAsoft). It was necessary to first optimize 
the mould, modifying the gait and overflow systems to improve the 
fluid dynamics in the cavity and to redesign the thermoregulation and 
lubrication systems in the cycle to improve the thermal performance 
of the equipment. At this stage, automatic optimization techniques 
were applied to define the best configurations. 

This activity was also preparatory to defining the positioning for the 
thermal and pressure sensors on the printing parts. Subsequent to 
the mould redesign and using virtual simulation it was possible to 
identify the macro areas on which to apply the sensors and to define 
which of these areas would be more sensitive to process variations. 
The purpose here was to define the most important areas from which 
to capture process instability data to be correlated with the quality of 
the components produced.

The position of the sensors was chosen by analysing virtual DOEs 
(design of experiments), where the process parameter variables 
include:

	z injection curve (first phase speed, second phase speed, and 
switching point)

Fig. 3. High pressure die casting product: a gearmotor housing.



	 Futurities - Summer 2022          29

TECHNOLOGY TRANSFER

	z lubrication time and blowing time
	z temperature and flow of the temperature control units
	z alloy temperature

The variations in these variables is observed and correlated with both the 
values emitted by the sensors and the previously presented component 
quality criteria by means of appropriate processing tools (Fig. 4). 

New revised castings were studied to improve castability and quality: 
from a fluid dynamics point of view, changes to the geometry and 
optimal parameter configurations are suggested.
Fig. 5 shows how porosity was significantly reduced and die life 
was extended by changing the thermoregulation and lubrication 
configurations (see Table 1).

Process monitoring and alerts
After the design phase, the monitoring platform was implemented by 
integrating the process and equipment data collected from an intricate 
network of existing and innovative sensors that had been applied to all 
key units in the manufacturing production line. The platform performs 
real-time data mining and triggers alerts when a deviation is outside 
the optimal range.

With regard to monitoring, data was acquired from the measurement 
system (supplied by Electronics GmbH) connected to a 560-ton press 
(Table 2).

Predictive quality model
Standardized quality classification and investigation methods [1], and 
the traceability of parts, are crucial for training the predictive quality 
model that guides the minimization of the indices affecting rejection 
rates. All process parameters (both virtual and physical) that can 
influence the quality of a given product were considered in the DOE 
used to train metamodel by correlating the process input variables and 
sensor data with the quality indices for the areas of interest. 

Full factorial and Sobol algorithms were applied to the DOE of the 
housing which is produced in 344 shots considering statistical 
repeatability and thermal steady state. The correlation of the input 
signal and quality indices highlights the most significant variables and 
deviations affecting the quality in the specific stage of casting, e.g. the 
die pressure signal correlates well with porosity and cold shot in the 
central areas of the body.

Fig. 4. Optimization of filling and correlation of variables with defects.

Original HPDC parameters Optimal HPDC parameters

Oil at 180 °C for mobile die 

thermoregulation

Oil at 130 °C for mobile thermoregulation 

+ H2O at 20 °C in central die-core

Oil at 250 °C for fixed 

thermoregulation
Oil at 130 °C for fixed die thermoregulation

Die lubrication for 15 sec with 

an average local time of 2 sec

Die lubrication in three steps 

Step 1: 3 sec; step 2: 2 sec; step 3: 5 sec

Table 1. Thermoregulation and lubrication configuration

Fig. 5. Optimization for solidification defects and prediction of die life. 

HPDC PHASE SENSOR SIGNAL RDS APPLICATION

Injection Biscuit thickness

Length of injection phases

Injection force

First stage pressure

Injection pressure

Exhaust pressure

Specific pressure

Piston position

Piston position

Injection pressure

Exhaust pressure

Solidification Contact temperature

Contact pressure

Contact temperature

Contact pressure

Cycle preparation Oven temperature

Room temperature

Lubricant quantity

Oven temperature

Room temperature

Lubricant quantity

Table 2. Data acquisition from the measurement system
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Quality mapping is based on NDT (non-
destructive testing) using visual inspection, 
X-ray, and metrology tools. Defect 
classification and digitalization is required 
for all the different areas of interest (Fig. 6) 
with particular reference to joint or cold shot, 
internal porosity, and lamination.

The quality prediction model correlates 
process variables with quality indices to 
supervise and optimize process parameters 
to result in zero defects. The cognitive 
system works with advanced machine 
learning algorithms to support the reactive 
decision-making in real time to improve 
product quality by catching potential defects 
as early as possible during key process steps. 
A wizard guides the user during the training 
phase. The system also offers a set of ready-
to-use machine learning (ML) algorithms, 
automatically processes all data sources to 
obtain the optimal approximation, and displays 
the processing results. The algorithms are 
used together with enhancement techniques 
based on: (a) decision trees, (b) nearest 
neighbours, (c) random forest, (d) support 
vector machines, and e) neural networks or 
customized algorithms. 

Users do not need analyse the data or 
manually find the model or algorithms for 
their production scenario. A simple interface 
guides them in acquiring, interpreting, 
and classifying the production signal in 
the dataset to train the metamodel, and in 
verifying the correlation, accuracy and error 
metrics. After automatically training the 
metamodel via grid search (cross validation), 
a single model was generated for each area 
and different defect. An example of error 
is 9.6% for porosity in the central body in 
contact with mobile die. The algorithms 

and models are automatically improved and 
retrained during production using the results 
of the new quality inspections.

DD-DT-assisted production and 
predictive quality modelling
Production normally starts using the best 
process configuration. The stability and 
repeatability of the best cycle is monitored 
with real-time comparisons to the previously 
selected reference curve and using 
instantaneous verification of the thresholds 
to meet the predicted quality. The waste or 
good parts predicted by quality models are 
displayed on a PC, table or smart phone 
connected to the system via the web. The 
decision support system (DSS) supports 
the selection of the best setting for the 
reconfiguration of the process parameters 
by suggesting the correct adjustment. It 
sends a message to the operator containing 
the identified defects and a proposed new 

configuration. The GUI displays the deviation 
recovery, process stability, and good quality 
forecast. At the same time, it updates costs 
and production KPIs in the OEE (Figs. 
7-8). The basic dashboard includes some 
predefined KPIs, such as quality, availability, 
and target cycle time. The user can define 
new KPIs (e.g. material volume, energy 
savings, and cost).

The results widget (Fig. 8) assists the quality 
prediction system: when the defect index 
values for a casting are all below the relevant 
thresholds set, the part is considered ‘good’; 
if even one value is over the threshold, the 
part is considered a ‘waste’. 

The monitoring system controls the quality 
of the production process from an abnormal 
operating state that generates waste (i.e. 
during the heating phase), to the expected 
operating state that produces good parts.

Fig. 7. Example of KPI display during production.

Fig. 8. Identification of good/waste castings (left) and list of defect levels in the corresponding areas (right).

Fig. 6. Quality control and casting area of interest. 
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In the end, the monitored data also contributes 
significantly to the real-time costing of each 
part. The cost model is based on the production 
and organization phases and the assigned 
cost categories (e.g. materials, manhours, 
maintenance, etc.) and cost items (e.g. raw 
material, scrap, operator, etc.). The cost KPI 
is evaluated after each shot in real time and 
the historical database shows the trend by 
correlating it with the process parameters and 
quality levels. The report wizard guides the 
user in selecting the chart type, data, and the 
cycle interval to be displayed. The periodic 
reports that can be printed and automatically 
shared with managers can include any graph 
or table (Fig. 9).
The repository of reports and data tables sits 
in the cloud and the MES (manufacturing 
execution system) connection was tested. 

Conclusions
This paper discusses a significant 
improvement to sustainable production 
when there are limitations to non-destructive 
inspections in-line (e.g. in casting) by 
means of an improved inspection system that 
enables a ‘right first time’ production process. 
Newly developed methodologies and tools 
prevent defects from being generated at 
the component level and propagated to the 
system level. A digital twin substantially 
improves and virtualizes manufacturing and 
engineering processes to save resources by 
avoiding testing and mock-ups.

The data-driven digital twin has proven to be 
essential in smart factories (e.g. Foundry4.0). 

The new, distributed architecture and 
extension of the interoperable, flexible digital 
platform along the production chain: 

	z facilitates remote process control 
supported by alarm management 
to accelerate rapid identification 
of defects up to full zero-defect 
production, 

	z reduces the cost of non-quality, and 
	z enhances the ability of agile production 

to restart with corrected configurations 
based on digital know-how. 

The pilot line of this new development 
in foundry digitalization demonstrates a 
significant reduction in defects with a 50% 
reduction in HPDC waste and a 60% increase 
in die life. The simulation of the foundry 
process supports the design of highly 
sensitive sensor network to detect process 
instability and capture defects in real time. 
Production supervision alerts the user in case 
of deviations and suggests the appropriate 
action based on the predictive quality model.

This validation in the foundry environment 
is also a reference for other complex 
manufacturing processes where the same 
approach can be successfully applied. The 
web platform has been designed to support 
multi-site production line monitoring (e.g. 
material supply, casting, heat treatment, and 
machining in the case of a foundry). 

The cloud becomes the final repository of 
the reports and data tables and the MES 
connection was tested. 

The digital twin is enhanced by real-time 
monitoring, data collection, and artificial 
intelligence to train the predictive model 
that is implemented from the machine level 
up to production chain level. This represents 
a significant step forward towards the most 
complete of digital transformations enriched 
by advanced ICT and human decision-making 
systems based on data, simulations, and 
representative process and product KPIs.

Fig. 9. Parallel chart of process parameters-defects correlation in a set of 150 cycles.
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