Simply Supported Beam with Torsional and Lateral Loading

This application analyzes a simply supported beam with torsional and lateral loading for a W10X54 steel beam (as defined by the AISC Steel Shapes Database).

References:

- Simplified Design for Torsional Loading of Rolled Steel Members, Lin, P.H., Engineering Journal, AISC, 1977
- 2010 Specification for Structural Steel Buildings (ANSI/AISC 360/10), Fourth Printing (https://www.aisc.org/content.aspx?id=2884)

Parameters

Warping Constant	$\mathrm{C}_{\mathrm{w}}:=1.2 \times 10^{3} \mathrm{inch}^{6}$
Torsional moment of inertia	$\mathrm{J}_{\mathrm{T}}:=1.51 \mathrm{inch}^{4}$
Elastic section modulus about the X-axis	$\mathrm{S}_{\mathrm{x}}:=60 \mathrm{inch}^{3}$
Elastic section modulus about the Y-axis	$\mathrm{S}_{\mathrm{y}}:=20.6 \mathrm{inch}^{3}$
Cross sectional area of member	$\mathrm{A}:=15.8 \mathrm{inch}^{2}$

Plastic section modulus about the x -axis		$\mathrm{Z}_{\mathrm{x}}:=66.6 \mathrm{inch}^{3}$	
Moment of inertia about the x-axis		$\mathrm{I}_{\mathrm{x}}:=303$ inch 4	
Moment of inertia about the y-axis		$\mathrm{l}_{\mathrm{y}}:=103$ inch 4	
Overall depth of member		$\mathrm{d}:=10.1 \mathrm{inch}$	
Radius of gyration about the x-axis		$r_{x}:=4.37$ inch	
Gravity distributed load	Lateral load in middle	Torsion at mid-span	Axial load
$\mathrm{w}:=1.15 \mathrm{kipf} \cdot \mathrm{ft}^{-1}$	$\mathrm{F}:=5 \mathrm{kipf}$	T := $5.1 \mathrm{kipf} \cdot \mathrm{ft}$	$\mathrm{P}:=96$ kipf
Beam length	Beam yield stress	Vertical bending unbraced length	Axial vertical unbraced length
$\mathrm{L}:=25 \mathrm{ft}$	$\mathrm{F}_{\mathrm{y}}:=50 \mathrm{ksi}$	$\mathrm{L}_{\mathrm{b}}:=15 \mathrm{ft}$	$L_{x}:=15 \mathrm{ft}$
Axial horizontal unbraced length	Young's modulus	Shear modulus	Tortional property (Lin, 1977)
$\mathrm{L}_{\mathrm{y}}:=7.5 \mathrm{ft}$	$\mathrm{E}:=29000 \mathrm{ksi}$	$\mathrm{G}:=11200 \mathrm{ksi}$	$\lambda:=\sqrt{\frac{G \cdot J_{T}}{E \cdot C_{w}}}=0.868 \frac{1}{m}$

Governing Moments at Middle of Span

Flexural moments
$M_{x}:=w \cdot L^{2} / 8=89.84$ kipf \cdot foot
$M_{y}:=F \cdot L / 4=42.37 \mathrm{kN} \cdot \mathrm{m}$
$\mathrm{M}_{0}:=\mathrm{T} \cdot \mathrm{L} /(4 \cdot \mathrm{~d})=51.35 \mathrm{kN} \cdot \mathrm{m}$

Lin (1977) page 101
$\beta:=\frac{4 \cdot \sinh (\lambda \cdot L / 2)^{2}}{\lambda \cdot L \cdot \sinh (\lambda \cdot L)}=0.302$
Torsional moment
$M_{T}:=\beta \cdot M_{0}=11.42$ kipf \cdot foot

Check Torsional Capacity (AISC 360-10 H3.3 \& Lin, 1977, p100)

Maximum combined normal stress at the load point

$$
f_{b x}:=\frac{M_{x}}{S_{x}}+\frac{2 \cdot M_{T}}{S_{y}}=3.13 \times 10^{4} \frac{\mathrm{llbf}}{\mathrm{in}^{2}}
$$

Safety factor for compression

$$
\Omega:=1.67
$$

$$
\mathrm{F}_{\mathrm{nx}}:=\mathrm{F}_{\mathrm{y}} / \Omega=29.940 \mathrm{ksi}
$$

Check Combined Compression and Bending Capacity (AISC 360-10, H!)

$M_{r x}:=\left(M_{x} / S_{x}+2 \cdot M_{T} / S_{y}\right) \cdot S_{x}=156.380 \mathrm{kipf} \cdot f$ foot
Effective length factor
$\mathrm{K}:=0.85$

Elastic buckling stress
$F_{e}:=\frac{\pi^{2} \cdot \mathrm{E}}{\left(\mathrm{K} \cdot \mathrm{L} / \mathrm{r}_{\mathrm{x}}\right)^{2}}=84.06 \mathrm{ksi}$

Allowable axial strength
$P_{\mathrm{n}}:=\mathrm{F}_{\mathrm{cr}} \cdot \mathrm{A}=2.74 \times 10^{3} \mathrm{kN}$
$P_{c}:=P_{n} / \Omega=1.64 \times 10^{3} \mathrm{kN}$

This is greater than Mrx so it is satisfactory
$M_{c y}:=M_{n} / \Omega=202.97 \mathrm{kN} \cdot \mathrm{m}$

Available flexural strength (Chapter F AISC 360-10)
$M_{n}:=\min \left(F_{y} \cdot Z_{x}, F_{y} \cdot S_{x}\right)=338.95 \mathrm{kN} \cdot \mathrm{m}$
$M_{c x}:=M_{n} / \Omega=149.70$ kipf \cdot foot
Critical stress

$$
F_{\mathrm{cr}}:=0.658^{F^{\prime} / \mathrm{F}_{\mathrm{e}} \cdot} \cdot \mathrm{~F}_{\mathrm{y}}=38.98 \mathrm{ksi}
$$

This should be below 1 for a satisfactory design

$$
\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}+\frac{8}{9} \cdot\left(\frac{\mathrm{M}_{\mathrm{rx}}}{\mathrm{M}_{\mathrm{cx}}}+\frac{\mathrm{M}_{\mathrm{y}}}{\mathrm{M}_{\mathrm{cy}}}\right)=1.37
$$

Determine Deflections

Max twist angle (Lin 1977, eq4) in degrees

$$
\begin{aligned}
& \phi:=\frac{T}{2 \cdot G \cdot J_{T} \cdot \lambda} \cdot\left(\frac{\lambda \cdot L}{2}-\frac{2 \cdot \sinh (\lambda \cdot L / 2)}{\sinh (\lambda \cdot L)}\right) \cdot \sinh \left(\frac{\lambda \cdot L}{2}\right)=3.62 \\
& I_{3}:=I_{x} \cdot \cos \left(\frac{(90-\phi) \cdot \pi}{180}\right)^{2}+I_{y} \cdot \sin \left(\frac{(90-\phi) \cdot \pi}{180}\right)^{2}=103.80 \mathrm{in}^{4} \\
& I_{4}:=I_{x} \cdot \cos \left(\frac{(90-\phi) \cdot \pi}{180}\right)^{2}+I_{y} \cdot \sin \left(\frac{(90-\phi) \cdot \pi}{180}\right)^{2}=103.80 \mathrm{in}^{4}
\end{aligned}
$$

$$
\text { Vertical deflection at middle } \quad \Delta \mathrm{vert}:=\frac{5 \cdot \mathrm{w} \cdot \mathrm{~L}^{4}}{384 \cdot \mathrm{E} \cdot \mathrm{I}_{3}}=3.36 \text { in }
$$

Horizontal deflection at middle $\quad \Delta$ horiz $:=\frac{\mathrm{F} \cdot \mathrm{L}^{3}}{48 \cdot \mathrm{E} \cdot \mathrm{I}_{4}}=0.93$ in

