


# Toe-Nail Connection Design (NDS 2018)

This application determines the allowable lateral design load for a wooden toe-nail connection.

Wood properties are from NDS (2018).

#### Reference:

National Design Specification® (NDS) for Wood Construction, 2018 edition, American Wood Council



### **Parameters**

Nail type

1 - Common wire

2 - Box

3 - Sinker

 $nail\_type := 1$ 

Nail penny-weight

 $nail\_weight \coloneqq \texttt{"10d"}$ 

Lumber species

1 - Douglas Fir-Larch

2 - Douglas Fir-Larch(N)

3 - Hem-Fir(N)

4 - Hem-Fir

5 - Spruce-Pine-Fir

lumber ≔ 5

Load duration factor

Table 2.3.2 NDS 2018 page 11

 $C_D^{} := 1.6$ 

Wet service factor

Section 10.3.3 NDS 2018 page 61

 $C_{M} := 1.0$ 

Temperature factor

Table 2.3.3 NDS 2018 page 11

 $C_{t}^{\cdot} = 1.0$ 

 $\mathrm{C}_{\mathrm{tn}} \coloneqq 0.83$ 

Toe-nail factor for lateral design Section 12.5.4.2 NDS 2018 page 91

## Data from National Design Specification (NDS) for Wood Construction 2018

```
penny_weight := ["6d", "7d", "8d", "10d", "12d", "16d", "20d", "30d", "40d", "50d", "60d"]
```

## Standard nail dimensions for common, box and sinker steel wire nails Table L4 NDS 2018 page 182

$$len := \begin{bmatrix} \text{"common"} & 2 & 2 + \frac{1}{4} & 2 + \frac{1}{2} & 3 & 3 + \frac{1}{4} & 3 + \frac{1}{2} & 4 & 4 + \frac{1}{2} & 5 & 5 + \frac{1}{2} & 6 \\ \\ \text{"box"} & 2 & 2 + \frac{1}{4} & 2 + \frac{1}{2} & 3 & 3 + \frac{1}{4} & 3 + \frac{1}{2} & 4 & 4 + \frac{1}{2} & 5 & \text{NULL NULL} \\ \\ \text{"sinker"} & \frac{17}{18} & 8 + \frac{1}{8} & 2 + \frac{3}{8} & 2 + \frac{7}{8} & 3 + \frac{1}{8} & 3 + \frac{1}{4} & 3 + \frac{3}{4} & 4 + \frac{1}{4} & 4 + \frac{2}{4} & \text{NULL } & 5 + \frac{3}{5} \end{bmatrix}$$

$$\mbox{hea} := \begin{bmatrix} \mbox{"common"} & 0.266 & 0.266 & 0.281 & 0.312 & 0.3121 & 0.344 & 0.406 & 0.438 & 0.469 & 0.500 & 0.531 \\ \mbox{"box"} & 0.266 & 0.266 & 0.297 & 0.312 & 0.312 & 0.344 & 0.375 & 0.375 & 0.406 & NULL & NULL \\ \mbox{"sinker"} & 0.234 & 0.250 & 0.266 & 0.281 & 0.312 & 0.344 & 0.375 & 0.406 & 0.438 & NULL & 0.500 \\ \end{bmatrix}$$

## Reference lateral design values for single shear Table 12B NDS 2018 page 111

|             | "d"   | "G=0.5" | "G=0.49" | "G=0.46" | "G=0.43" | "G=0.42" |
|-------------|-------|---------|----------|----------|----------|----------|
| $Z_{34} :=$ | 0.099 | 55      | 54       | 51       | 48       | 47       |
|             | 0.113 | 72      | 71       | 65       | 58       | 57       |
|             | 0.120 | 80      | 77       | 71       | 64       | 62       |
|             | 0.128 | 87      | 84       | 78       | 70       | 68       |
|             | 0.131 | 90      | 87       | 80       | 73       | 70       |
|             | 0.135 | 94      | 91       | 84       | 76       | 74       |
|             | 0.148 | 105     | 102      | 94       | 85       | 83       |
|             | 0.162 | 121     | 117      | 108      | 99       | 96       |
|             | 0.177 | 134     | 130      | 121      | 111      | 107      |
|             | 0.192 | 138     | 134      | 125      | 114      | 111      |
|             | 0.207 | 147     | 143      | 133      | 122      | 119      |
|             | 0.225 | 158     | 154      | 144      | 132      | 129      |
|             | 0.244 | 162     | 158      | 147      | 136      | 132      |

| ſ                   | "d"   | "G=0.5" | "G=0.49" | "G=0.46"   | "G=0.43" | "G=0.42" |   |
|---------------------|-------|---------|----------|------------|----------|----------|---|
|                     | 0.099 | 55      | 54       | 51         | 48       | 47       |   |
|                     | 0.113 | 72      | 71       | 65         | 63       | 61       |   |
|                     | 0.120 | 81      | 80       | 76         | 71       | 69       | ĺ |
|                     | 0.128 | 93      | 91       | 86         | 80       | 79       | ĺ |
| _                   | 0.131 | 97      | 95       | 90         | 84       | 82       |   |
|                     | 0.135 | 103     | 101      | 96         | 89       | 86       | ĺ |
| $Z_1 :=  $          | 0.148 | 118     | 115      | 109        | 99       | 96       | ĺ |
|                     | 0.162 | 141     | 137      | 125        | 113      | 109      | ĺ |
|                     | 0.177 | 155     | 150      | 138        | 125      | 121      | ĺ |
|                     | 0.192 | 159     | 154      | 142        | 128      | 124      |   |
|                     | 0.207 | 167     | 162      | 147        | 135      | 131      | ĺ |
|                     | 0.225 | 177     | 171      | 159        | 144      | 140      |   |
|                     | 0.244 | 181     | 175      | 162        | 148      | 143      |   |
|                     | r     |         |          |            |          |          |   |
|                     | "d"   |         |          | " "G=0.46" |          |          |   |
|                     | 0.099 |         | 54       | 51         | 48       | 47       |   |
|                     | 0.113 |         | 71       | 67         | 63       | 61       |   |
|                     | 0.120 |         | 80       | 76         | 71       | 69       |   |
|                     | 0.128 | 93      | 91       | 86         | 80       | 79       |   |
|                     | 0.131 | 97      | 95       | 90         | 84       | 82       |   |
| 7 .                 | 0.135 | 103     | 101      | 96         | 89       | 88       |   |
| Z <sub>114</sub> := | 0.148 | 118     | 115      | 109        | 102      | 100      |   |
|                     | 0.162 | 141     | 138      | 131        | 122      | 120      |   |

|                     | "d"   | "G=0.5" | "G=0.49" | "G=0.46" | "G=0.43" | "G=0.42" |
|---------------------|-------|---------|----------|----------|----------|----------|
| Z <sub>112</sub> := | 0.099 | 55      | 54       | 51       | 48       | 47       |
|                     | 0.113 | 72      | 71       | 67       | 63       | 61       |
|                     | 0.120 | 81      | 80       | 76       | 71       | 69       |
|                     | 0.128 | 93      | 91       | 86       | 80       | 79       |
|                     | 0.131 | 97      | 95       | 90       | 84       | 82       |
|                     | 0.135 | 103     | 101      | 96       | 89       | 88       |
|                     | 0.148 | 118     | 115      | 109      | 102      | 100      |
|                     | 0.162 | 141     | 138      | 131      | 122      | 120      |
|                     | 0.177 | 163     | 159      | 151      | 141      | 138      |
|                     | 0.192 | 170     | 166      | 157      | 147      | 144      |
|                     | 0.207 | 186     | 182      | 172      | 161      | 158      |
|                     | 0.225 | 205     | 201      | 190      | 178      | 172      |

0.177

0.192

0.207

0.225

0.244

0.244

$$Z_{134} := \begin{array}{|c|c|c|c|c|c|c|} & "d" & "G=0.5" & "G=0.49" & "G=0.46" & "G=0.43" & "G=0.43" \\ \hline 0.113 & 72 & 71 & 67 & 63 & 61 \\ 0.120 & 81 & 80 & 76 & 71 & 69 \\ 0.128 & 93 & 91 & 86 & 80 & 79 \\ 0.135 & 103 & 101 & 96 & 89 & 88 \\ \hline 0.148 & 118 & 115 & 109 & 102 & 100 \\ 0.162 & 141 & 138 & 131 & 122 & 120 \\ 0.177 & 163 & 159 & 151 & 141 & 138 \\ 0.192 & 170 & 166 & 157 & 147 & 144 \\ 0.207 & 186 & 182 & 172 & 161 & 158 \\ 0.225 & 205 & 201 & 190 & 178 & 174 \\ 0.244 & 211 & 206 & 196 & 183 & 179 \\ \hline \end{array}$$

### Calculations

Length and diameter of nail

ind := ListTools:-Search(nail weight, penny weight) = 4

Length in inches

$$L := \begin{cases} len[1, ind + 1] & nail\_type = 1 \\ len[2, ind + 1] & nail\_type = 2 \\ len[3, ind + 1] & nail\_type = 3 \end{cases}$$

$$L = 3$$

Diameter in inches

$$d := \begin{cases} dia[1, ind + 1] & nail\_type = 1 \\ dia[2, ind + 1] & nail\_type = 2 \\ dia[3, ind + 1] & nail\_type = 3 \end{cases} \qquad d = 0.148$$

Side member thickness

$$t_s := L/3 = 1$$

Penetration of nail into the main member

$$\mathsf{p} \coloneqq \mathsf{L} {\cdot} \mathsf{cos}(30 \; \mathsf{deg}) \; -\mathsf{t}_{_{_{\!\boldsymbol{s}}}} = \; 1.598$$

Penetration factor Note 3, tab 11N, NDS 2018

$$C_{d} := \begin{cases} \frac{p}{10 \cdot d} & p < 10 \cdot d \text{ and } p \ge 6 \cdot d \\ 1 & \text{otherwise} \end{cases}$$

$$C_{d} = 1$$

Nominal design value for single shear (lbs) Table 12N NDS 2-18 page 111

 $\textit{Z} \coloneqq \textit{shear\_design} \big[ \textit{ListTools:-Search} \big( \underset{s}{t}, \textit{shear\_design} \big) [1] \big] [2]$ 

z = 96

Allowable lateral design value for the toe nail (lbs)

 $\mathsf{Zd} := \mathsf{Z} \cdot \mathsf{C}_{_D} \cdot \mathsf{C}_{_M} \cdot \mathsf{C}_{_t} \cdot \mathsf{C}_{_d} \cdot \mathsf{C}_{_{tn}} \text{= } 127.488$