## Maximum Flow Rate in Open-Channel Flow for a Circular Pipe

This application determines the greatest attainable flowrate in a circular pipe partially filled with water


The Manning formula is employed to calculate the open-channel flow of water:

$$
\mathrm{Q}:=\frac{1.49}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}
$$

where

- Q is the flowrate
- n is an empirical coefficient
- A is the cross-sectional area of flow
- $R$ is the hydraulic raduis
- $S$ is the incline of the channel

Flow area for a partially filled circular pipe

$$
A:=\pi \cdot r^{2}-r^{2} \cdot \frac{\theta-\sin (\theta)}{2}
$$

Wetted perimeter and hydraulic radius

$$
P:=2 \cdot \pi \cdot r-r \cdot \theta
$$

$$
R:=\frac{A}{P}=\frac{3.142 \cdot r^{2}-r^{2} \cdot(0.500 \cdot \theta-0.500 \cdot \sin (\theta))}{-r \cdot \theta+6.283 \cdot r}
$$

The Manning formula then becomes

$$
\operatorname{simplify}(Q)=\frac{0.469 \cdot(6.283-\theta+\sin (\theta)) \cdot r^{2} \cdot \sqrt{S_{\theta}} \cdot\left(\frac{r \cdot(-1.000 \cdot \sin (\theta)+\theta-6.283)}{\theta-6.283}\right)^{2 / 3}}{n}
$$

Parameters

$$
\mathrm{n}:=0.013 \quad \mathrm{~S}_{0}:=0.0001 \quad \mathrm{r}:=4
$$

Find the value of theta that mimizes $Q$

$$
\text { res }:=\text { Optimization: -Maximize }(Q)=[98.377,[\theta=1.005]]
$$

Maximum flow rate

$$
\mathrm{Q}_{\text {maxflow }}:=\operatorname{res}[1] \quad \theta_{\text {maxflow }}:=\operatorname{rhs}(\operatorname{res}[2,1])=1.005
$$

Flow depth


