Forces in a 4 Member Frame

This frame is subject to a load P at point G. This application will determine the forces at the supports and in members BE and CF .

Since the frame is in equilibrium, the sum of horizontal forces, sum of vertical forces, and sum of momentum about a point is zero. This allows us to identify the unknown forces in the frame.

Load and load angle	$P:=-800 \mathrm{~N} \quad \theta:=30 \mathrm{deg}$
Length	$\mathrm{a}:=0.3 \mathrm{~m} \quad \mathrm{~b}:=0.4 \mathrm{~m}$
Sum of the moments about A	sum_moments_A $:=\mathrm{b} \cdot \mathrm{D}_{\mathrm{x}}+\mathrm{b} \cdot \mathrm{P} \cdot \cos (\theta)+3 \cdot \mathrm{a} \cdot \mathrm{P} \cdot \sin (\theta)$
	$D_{x}:=\text { fsolve }\left(\text { sum_moments_A, } D_{x}\right)=1.593 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~m}}$
Sum of the forces about A	sum_forces_A $:=A_{x}+D_{x}+P \cdot \cos (\theta)=0$
	$A_{x}:=$ fsolve $\left(\right.$ sum_forces_A, $\left.A_{x}\right)=-900.000 \frac{\mathrm{~J}}{\mathrm{~m}}$

The forces on BE and CF must be equal (but opposite in sign) for the members to be at rest. Split BE and CF.

Angles
$\alpha:=\arctan \left(\frac{b}{c-a}\right)=1.107 \quad \beta:=\arctan \left(\frac{b}{a}\right)=0.927$

Four forces remain: Ay, Dy, FBE and FCF
sum_moments_ABC $:=c \cdot F_{B E} \cdot \sin (\alpha)+3 \cdot a \cdot F_{C F} \cdot \sin (\beta)=0$
sum_moments_DEFG $:=\mathrm{a} \cdot \mathrm{F}_{\mathrm{BE}} \cdot \sin (\alpha)+2 \cdot \mathrm{a} \cdot \mathrm{F}_{\mathrm{CF}} \cdot \sin (\beta)+3 \cdot \mathrm{a} \cdot \mathrm{P} \cdot \sin (\theta)$

Solve for FBE and FCF

$$
\begin{aligned}
& \text { res }:=f \text { solve }\left(\{\text { sum_moments_ABC, sum_moments_DEFG }\},\left\{\mathrm{F}_{\mathrm{BE}}, \mathrm{~F}_{\mathrm{CF}}\right\}\right) \\
& \text { res }=\left\{\mathrm{F}_{\mathrm{BE}}=-1.207 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~m}}, \mathrm{~F}_{\mathrm{CF}}=7.500 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~m}}\right\} \\
& \text { be }\left(\mathrm{se}^{\prime}\right) \\
& \mathrm{F}_{\mathrm{CF}}:=\operatorname{eval}\left(\mathrm{F}_{\mathrm{CF}}, \mathrm{res}\right)=7.500 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Member ABC
sum_forces_ABC $:=A_{y}-F_{B E} \cdot \sin (\alpha)-F_{C F} \cdot \sin (\beta)=0$
fsolve $\left(\right.$ sum_forces_ABC, $\left.A_{y}\right)=-4.800 \times 10^{3} \mathrm{~N}$

Member DEFG
sum_forces_DEFG $:=D_{y}+F_{B E} \cdot \sin (\alpha)+F_{C F} \cdot \sin (\beta)+P \cdot \sin (\theta)=0$
fsolve(sum_forces_DEFG, $\left.D_{y}\right)=5.200 \times 10^{3} \mathrm{~N}$

