

Live Loads with Vehicular Centrifugal Force

This document analyzes the vehicular live load force effects by calculating the unit wheel-load factors with the centrifugal force and superelevation. The calculation is based on LRFD for Highway Bridge Superstructures Reference Manual.

References:

- (Spec) : AASHTO LRFD Bridge Design Specification
- (Manual) : Load and Resistance Factor Design (LRFD) for Highway Bridge Superstructures - (Exam) : Design Examples

Figure 1 : Vehicular centrifugal force by the wheel-load reactions

1. Parameters and Conditions

\	_	-		I
~	Δ	n	IC	IД
v			IC	I.C.

Wheel spacing	$s_{wh}^{} \coloneqq 6 \ ft$
Height at which the radial force is applied above the deck	h ≔ 6 ft
Lane and Deck	
Radius of curvature of traffic lane	R ≔ 700 ft
Deck cross slope (superelevation)	$sl\coloneqq 0.05$
	sl = 5.00%
Design condition	
Highway design speed	$v \coloneqq 35 \text{ mph}$
Wheel-load Factor for fatigue : 1.0 Other than fatigue : 4/3	$f := \frac{4}{3}$
Others	
Gravitational acceleration	$g \coloneqq 32.2 \ \frac{ft}{s^2}$

2. Vehicular Centrifugal Force

The centrifugal effect on live load can be analyzed with the axle weights of the design truck or tandem and the following factor C.

Reference: Spec-Eq 3.6.3-1
$$C := \frac{f \cdot v^2}{g \cdot R}$$

C = 0.156

3. Wheel-load Reactions by the Centrifugal Force Effects

This effects shows in Figure.1.

Left
$$R_{CL} := C \cdot W_{axle} \cdot \frac{h \cdot \cos(\theta)}{2 \cdot \left(\frac{s_{wh}}{2} \cdot \cos(\theta)\right)} = 0.156 \cdot W_{axle}$$

Right
$$R_{CR} := -R_{CL} = -0.156 \cdot W_{axle}$$

4. Wheel-Load Reactions by the Superelevation Effects

Figure 2 : Effects of superelevation on the wheel-load reactions

Angle of superelevation $\theta \coloneqq \arctan(sl)$ rad $\theta = 2.862$ arcdeg

$$R_{SR} := \frac{\left(\frac{s_{wh}}{2} \cdot \cos(\theta) + h \cdot \sin(\theta)\right) \cdot W_{axle}}{s_{wh} \cdot \cos(\theta)} = 0.550 \cdot W_{axle}$$

Left

$$Right R_{SL} := 1.0 \cdot W_{axle} - R_{SR} = 0.450 \cdot W_{axle}$$

Left

Figure 3 : Effects of superelevation on the wheel-load reactions

 $F_{L} := 2.0 \cdot \frac{R_{CL} + R_{SL}}{W_{axle}} = 1.212$

Right
$$F_{R} := 2.0 \cdot \frac{R_{CR} + R_{SR}}{W_{axle}} = 0.788$$