


## ASME B31.3 Processing Piping - Required Pressure Design Wall Thickness for Bends

This application calculates the required thickness for a pipe bend according to ASME B31.1 - 2020 Power piping paragraph 102.4.5 & 104.1.2(a)



## Parameters

| Weld joint quality factor<br>ASME B31.3 Table 302.3.4    | $E_j := 1.00$                        |
|----------------------------------------------------------|--------------------------------------|
| Coefficient Y<br>ASME B31.3 Table 304.1.1                | Y := 0.4                             |
| Design temperature (C)                                   | temp $:= 537$                        |
| Bend radius, measured to pipe centerline                 | $R_1 \coloneqq 762  mm$              |
| Material allowable stress (MPa)<br>ASME B31.3 Table A-1M | $\mathbf{S}\coloneqq 95\mathbf{MPa}$ |

| Pipe outside diameter from pipe charts                         | Dia := 273.05 mm                                                                                                                     |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Nominal thickness                                              | $T_{nom} := 2.6416  mm$                                                                                                              |
| Manufacturing tolerance (%)                                    | mil := 12.5                                                                                                                          |
| Corrosion allowance                                            | C := 0 mm                                                                                                                            |
| Depth of threading, grooving or machining                      | $D_{tgm} \coloneqq 0.063mm$                                                                                                          |
|                                                                | $A := C + D_{tgm} \texttt{=} 0.063  mm$                                                                                              |
| Internal gauge pressure                                        | P := 1000kPa                                                                                                                         |
| Weld joint strength reduction factor<br>ASME B31.3 Cl. 302.3.5 | $W := \left\{ \begin{array}{cc} 1 & \text{temp} < 510.1 \\ 1 - \frac{\text{temp} - 510}{610} & \text{otherwise} \end{array} \right.$ |

W = 0.956

## Pressure Design Thickness of Connecting Straight Pipe

| Pressure design thickness of connecting straight pipe                                                                                       | $t_{m} := \frac{P \cdot Dia}{2 \cdot \left(S \cdot E_{j} + P \cdot Y\right)} + A = 1.494 \text{ mm}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Suggested thickness of pipe before bending                                                                                                  | t <sub>m</sub> ·1.25 = 1.868 mm                                                                      |
| Minimum or measured thickness of pipe                                                                                                       | $T := T_{nom} \cdot \frac{(100 - mil)}{100} = 2.311 mm$                                              |
| $\left\{ \begin{array}{ll} "Nominal thickness is ok" & T \geq t_m \\ \\ "Increase nominal thickness" & otherwise \end{array} \right. = "No$ | minal thickness is ok"                                                                               |

Required maximum inside nominal diameter of connecting pipe

$$d := \text{Dia} - 2 \cdot t_{\text{m}} = 270.062 \,\text{mm}$$

## Pressure Design Thickness of Bended Pipe

$$I_{\text{ntrades}} := \frac{4 \cdot R_1 / \text{Dia} - 1}{4 \cdot R_1 / \text{Dia} - 2} = 1.109$$

$$I_{\text{ntrades}} := \frac{4 \cdot R_1 / \text{Dia} + 1}{4 \cdot R_1 / \text{Dia} + 2} = 0.924$$

$$I_{\text{at the extrados}}$$

$$I_{\text{ntrados}}$$

$$I_{\text{at the extrados}}$$

$$I_{\text{ntrados}}$$

$$I_{\text{otrados}}$$

$$I_{\text{extrados}}$$

$$I_{\text{ntrados}}$$

$$I_{\text{ntrados}}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}}$$

$$I_{\text{ntrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{ntrados}}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}$$

$$I_{\text{extrados}}$$

$$I_{\text{extrados}$$

$$I_{\text{extrado$$

Minimum thickness of bend at any point

 $max(t_{intrados}, t_{extrados}, t_{s}) = 1.723 \text{ mm}$