Expansion Loop for Thermal Expansion of Pipes

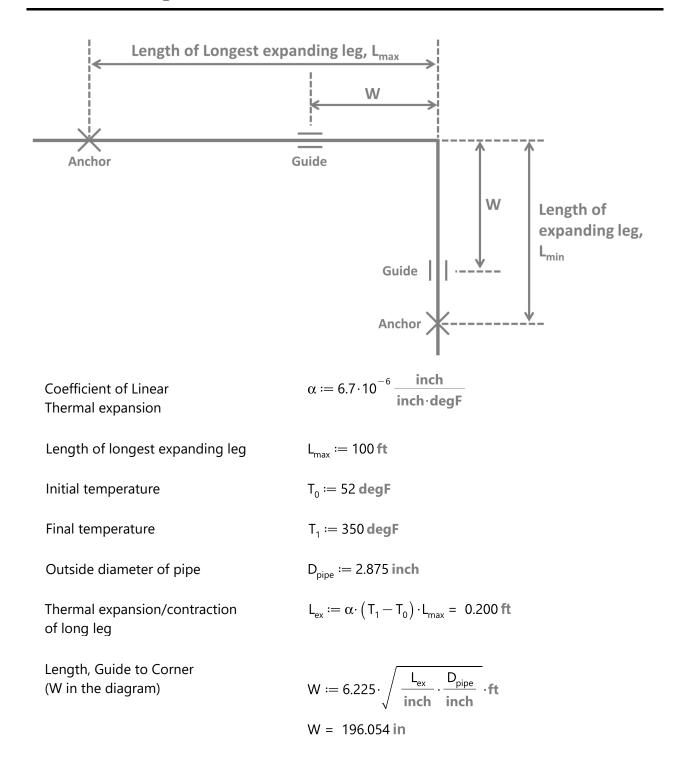
Pipes expands when they're heated, and contract when cooled. Length fluctuations can lead to costly issues. An expansion loop is one approach to absorb thermal expansion and contraction in pipes.

The expansion and contraction of pipes can be calculated with the coefficient of thermal expansion and this equation.

$$\Delta \mathsf{L} = \alpha \cdot \Delta \mathsf{T} \cdot \mathsf{L}_{\mathsf{pipe}}$$

 $\begin{array}{l} \Delta L : Change \mbox{ of pipe length} \\ \alpha : Coefficient \mbox{ of Thermal expansion} \\ L_{pipe} : Length \mbox{ of pipe} \end{array}$

 ΔT : Change of temperature


Reference : https://en.wikipedia.org/wiki/Thermal_expansion

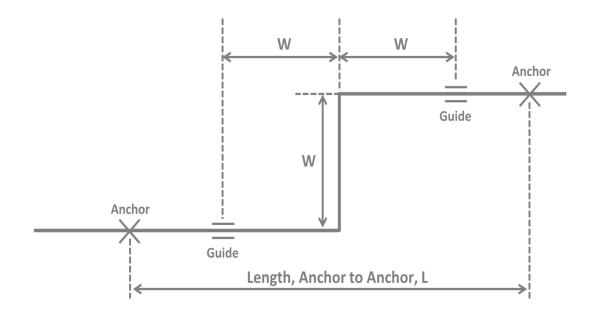
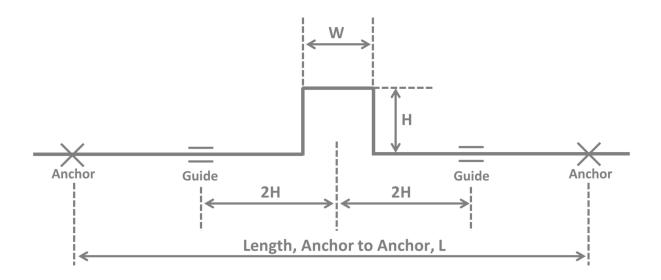

Material	$10^{-6} \cdot \frac{\mathbf{m}}{\mathbf{m} \cdot \mathbf{K}}$	10 ^{−6} · <u>inch</u> inch·degF
Cast copper	17 - 18	9.2-9.8
Structural Steel	12	6.5
Wrought iron	11	6.4
Iron alloys	10 - 20	5.6 - 11
Iron carbon alloys	10 - 12	5.6 - 6.5
Cast austenitic stainless steel	10 - 17	5.6 - 9.6
Duplex stainless steel	10 - 15	5.6 - 8.3
Nonresulfurized carbon steel	8.8 - 15	4.9 - 8.4
Resulfurized carbon steel	11 - 14	6.2 - 7.5
	1	I

Table 1 : Example, Coefficient of Linear thermal expansion (Reference : Thermal Properties of Metals, ASM International)

This application shows how to calculate length of loops for several types of the expansion loops.


L-Bends (Change of Direction)

Coefficient of Linear Thermal expansion	$\alpha := 6.7 \cdot 10^{-6} \frac{\text{inch}}{\text{inch} \cdot \text{degF}}$
Length, Anchor to Anchor	L := 100 ft
Initial temperature	T ₀ := 52 degF
Final temperature	T ₁ := 350 degF
Outside diameter of pipe	$D_{pipe} \coloneqq 2.875$ inch
Thermal expansion/contraction of long leg	$\mathbf{L}_{\mathrm{ex}} \coloneqq \alpha \cdot \left(\mathbf{T}_{1} - \mathbf{T}_{0} \right) \cdot \mathbf{L} = 0.200 \mathrm{ft}$
Length, Guide to Corner (W in the diagram)	$W := 4 \cdot \sqrt{\frac{L_{ex}}{\text{inch}} \cdot \frac{D_{pipe}}{\text{inch}}} \cdot \text{ft}$

W = 125.978 in

Coefficient of Linear Thermal expansion	$\alpha := 6.7 \cdot 10^{-6} \frac{\text{inch}}{\text{inch} \cdot \text{degF}}$
Length, Anchor to Anchor	L := 100 ft
Initial temperature	T ₀ := 52 degF
Final temperature	T ₁ := 350 degF
Outside diameter of pipe	D _{pipe} := 2.875 inch
Thermal expansion/contraction of long leg	$L_{ex} := \alpha \cdot (T_1 - T_0) \cdot L = 2.396 in$
Length of expansion loop (W and H in the diagram)	$L_{loop} := 6.225 \cdot \sqrt{\frac{L_{ex}}{inch} \cdot \frac{D_{pipe}}{inch}} \cdot ft = 196.054 in$
	$W := \frac{L_{loop}}{5} = 39.211 \text{ in}$

$$H := 2 \cdot W = 78.422 \text{ in}$$