

Worst Case Analysis for an Analog Filter

In this application, the worst case analysis for Analog bandpass filter is performed. The circuit is an active filter with Op-amp. And, the list of data calculated from the nominal value and the tolerance for constants of electrical components is used for the analysis.

1. Functions to Calculate Transfer function

Impedance of Capacitor in Laplace domain

$$Z_{C} := (C_{\theta}) \rightarrow \frac{1}{s \cdot C_{\theta}}$$

Impedance of Inductor in Laplace domain

$$Z_L := (L_{\theta}) \rightarrow S \cdot L_{\theta}$$

$$\mathtt{ll}_{\mathtt{Z}} \coloneqq (\mathtt{Z}_{\mathtt{1}}, \mathtt{Z}_{\mathtt{2}}) \!\rightarrow\! \! \frac{\mathtt{Z}_{\mathtt{1}} \!\cdot\! \mathtt{Z}_{\mathtt{2}}}{\mathtt{Z}_{\mathtt{1}} \!+\! \mathtt{Z}_{\mathtt{2}}}$$

2. Transfer function of Analog bandpass filter

$$Z_i := R_1 + Z_{C(C_1)} = R_1 + \frac{1}{s \cdot C_1}$$

$$Z_{f} := 11_{Z}(R_{2}, Z_{C}(C_{2})) = \frac{R_{2}}{s \cdot C_{2} \cdot \left(R_{2} + \frac{1}{s \cdot C_{2}}\right)}$$

$$\mathsf{G}_{\mathsf{s}} \coloneqq -\frac{\mathsf{Z}_{\mathsf{f}}}{\mathsf{Z}_{\mathsf{i}}} = -\frac{\mathsf{R}_{\mathsf{2}}}{\mathsf{s} \cdot \mathsf{C}_{\mathsf{2}} \cdot \left(\mathsf{R}_{\mathsf{2}} + \frac{\mathsf{1}}{\mathsf{s} \cdot \mathsf{C}_{\mathsf{2}}}\right) \cdot \left(\mathsf{R}_{\mathsf{1}} + \frac{\mathsf{1}}{\mathsf{s} \cdot \mathsf{C}_{\mathsf{1}}}\right)}$$

Create System object for Maple's DynamicSystems package tfsys $:= DynamicSystems: -TransferFunction(G_s)$

Check the object

continuous 1 output(s); 1 input(s)

inputvariable = [u1(s)]

outputvariable = [y1(s)]

$$tf_{1,1} = -\frac{R_2 \cdot C_1 \cdot s}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot s^2 + (C_1 \cdot R_1 + C_2 \cdot R_2) \cdot s + 1}$$

3. Create the parameter list

Parts name

$$\mathsf{Parts} \coloneqq [\mathsf{R}_1, \mathsf{R}_2, \mathsf{C}_1, \mathsf{C}_2]$$

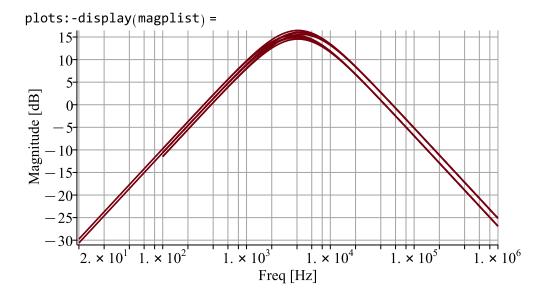
Nominal value

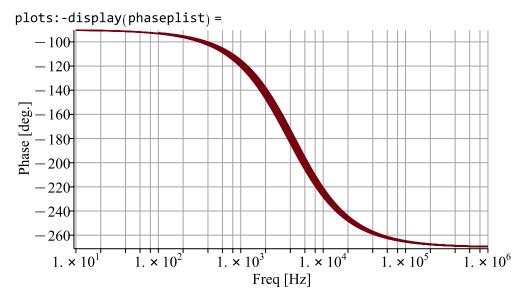
Nom :=
$$[4.7 \cdot 10^3, 47 \cdot 10^3, 10 \cdot 10^{-9}, 680 \cdot 10^{-12}]$$

Tolerance

Tol :=
$$\left[10, 5, 5, \frac{1}{680} \cdot 100\right]$$

List of parameters based on tolerance


$$Par := [seq(Nom + \sim Nom \cdot \sim Tol \cdot \sim (Bits: -Split(i, bits = nops(Nom)) \cdot 2 - \sim 1) \cdot 0.01, i = 1..nops(Nom)^2)]$$


Obtain the plot data of magnitude & phase plots

```
\begin{split} \text{magplist} &:= \big[ \textit{seq}(\text{DynamicSystems:-BodePlot}(tfsys, \\ & \text{parameters} = \big[ \textit{seq}(\text{Parts[i]} = \text{Par[j][i]}, i = 1 ... \text{nops}(\text{Parts})) \big], \\ & \text{output} = \text{magnitudeplot}, \text{hertz}), j = 1 ... \text{nops}(\text{Nom})^2) \big] \end{split}
```

```
\begin{aligned} \text{phaseplist} &\coloneqq \big[ \textit{seq}(\text{DynamicSystems:-BodePlot}(\text{tfsys}, \\ & \text{parameters} = \big[ \textit{seq}(\text{Parts[i]} = \text{Par[j][i]}, i = 1 .. \text{nops}(\text{Parts})) \big], \\ & \text{output} = \text{phaseplot}, \text{hertz}), j = 1 .. \text{nops}(\text{Nom})^2) \big] \end{aligned}
```

Check plots

5. Find the set of parameters for Max and Min

Obtain the list of data of magnitude plot

```
magdat := [seq(DynamicSystems:-BodePlot(tfsys, parameters = [seq(Parts[i] = Par[j][i], i = 1 ..nops(Parts))],
output = magnitudedata, hertz), j = 1 ..nops(Nom)<sup>2</sup>)]
```

Collect the datapoints of the maximum magnitude for each parameter set

```
\mathsf{maxmag} \coloneqq [\mathit{seq}(\mathsf{max}(\mathsf{convert}(\mathsf{magdat}[\mathtt{i}][\mathtt{1..-1},\mathtt{2}],\mathtt{list})),\mathtt{i=1..nops}(\mathsf{Nom})^2)]
```

Find the parameter sets which have the maximum and minimum point

```
maxvalue, maxpos := ListTools:-FindMaximalElement(maxmag, position)
minvalue, minpos := ListTools:-FindMinimalElement(maxmag, position)
```

Organize results

```
\begin{split} & \texttt{MaxPattern} \coloneqq seq(\texttt{Parts[i]} = \texttt{Par[maxpos][i], i=1..nops}(\texttt{Parts})) \\ & \texttt{NomPattern} \coloneqq seq(\texttt{Parts[i]} = \texttt{Nom[i], i=1..nops}(\texttt{Parts})) \\ & \texttt{MinPattern} \coloneqq seq(\texttt{Parts[i]} = \texttt{Par[minpos][i], i=1..nops}(\texttt{Parts})) \end{split}
```

Final result of Maximum/Nominal/Minimum

```
\label{eq:maxPattern} \begin{split} \text{MaxPattern} &= \text{ R}_1 = 4.230 \times 10^3 \text{, R}_2 = 4.935 \times 10^4 \text{, C}_1 = 1.050 \times 10^{-8} \text{, C}_2 = 6.790 \times 10^{-10} \\ \text{NomPattern} &= \text{ R}_1 = 4.700 \times 10^3 \text{, R}_2 = 47000 \text{, C}_1 = 1.000 \times 10^{-8} \text{, C}_2 = 6.800 \times 10^{-10} \\ \text{MinPattern} &= \text{ R}_1 = 5.170 \times 10^3 \text{, R}_2 = 4.465 \times 10^4 \text{, C}_1 = 9.500 \times 10^{-9} \text{, C}_2 = 6.810 \times 10^{-10} \end{split}
```