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With the global shift towards electrification as a primary energy 
storage solution, there is an escalating need to better understand the 
behaviour of batteries. As battery technologies advance, incorporating 
several rare-earth elements and achieving higher energy densities, 
safety considerations become paramount. 

Therefore, understanding the behaviour and performance of batteries 
under different operating conditions is critical to the large-scale 
adoption of batteries. Predictive modelling that can accurately 
forecast safety, performance, and lifetime is therefore indispensable. 

The traditional approach to this type of analysis involves physics-
based modelling, which, while powerful, presents considerable 
challenges. Batteries are complexly designed devices consisting of 
multiple materials layered together. Their functionality depends on 
an intricate interplay of various phenomena — electrochemistry, 
heat transfer, and fluid dynamics, to name a few — that control the 
transport of ions and electrons and the production of heat within the 
battery. 

To effectively model these phenomena within the overall structure of 
an electrochemical cell, accurate design, transport, and degradation 
parameters are required to get physically relevant results from a 
physics-based model. 

A key challenge during digital battery twinning is identifying the 
“Goldilocks zone” for parameters. For predictions to be dependable, 
the entire set of parameters must be precisely calibrated over the 
battery's lifecycle. However, obtaining and validating the correct set 
of parameters is not easy. Inaccuracies in parameter estimation can 
lead to significant errors in model predictions, reducing the reliability 
of safety assessments and performance predictions. 

This complexity underlines the need for sophisticated tools capable 
of offering robust multi-parameter optimization, like -the hybrid 
software solution, oorja, which extracts essential information from 
HPPC (hybrid pulse power characterization) data to simulate real-
world battery behaviour under various operating conditions.

Approach
At oorja, engineers have pioneered a hybrid approach that 
combines data and physics-based models to perform multi-
parameter optimization with limited data sets to provide detailed 
information on transport and degradation parameters for Lithium-ion  
(Li-ion) cells. 

Multi-parameter optimization techniques for estimating parameters 
using HPPC data involve adjusting the model parameters until a 
satisfactory fit is achieved between the model and the experimental 
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data. The objective function for optimization is defined by the sum 
of the squares of the errors between the predicted and experimental 
values. The error is split into two parts. 

	z At the beginning of the step change in the pulse (estep). 
	z During the pulse (epulse). 

During the step change in the pulse, the loss function is computed 
using the following formula: 

where ti corresponds to the first of the pulses at which the step 
change in the current occurs, and during the pulse, the loss function 
is given by:

,
where ti is the time duration of the pulse. Thereafter the total loss 
function is computed as the weighted sum of the estep and epulse: 

where ѡstep and ѡpulse are the respective weights. 

Among all the electrochemical parameters associated with the Single 
Particle Model (SPM), a set of five parameters (namely the internal 
resistance of the cell, the Li-ion diffusion coefficients of positive and 
negative electrodes, and the reaction rate constant of the positive 
and negative electrodes) are found to be sensitive to operating 
conditions, especially when considerable temperature fluctuations 
occur. Optimization algorithms adjust these parameters to minimize 
the differences between model predictions and experimental data.
After optimizing the set parameters and obtaining the prediction fit, 
users can adjust these parameters to improve the prediction fit further 
based on their informed judgment.

Results
In HPPC tests, the battery is subjected to a sequence of charge and 
discharge pulses of different magnitude and duration in different 
states of charge (SoC). Its voltage response is observed and recorded. 

Using the technique described previously, parameter optimization 
simulations were performed on experimentally obtained HPPC data 

sets of cylindrical 21700 commercial cells (LGM50) with a nominal 
capacity of 3Ah at temperatures 0°C, 25°C, and 40°C. Conditioning 
was carried out for 40 minutes. The resulting parameter values at 
various temperatures are shown in Table 1.

The prediction voltage responses obtained from the simulations and 
the percentage error plots are shown in Fig.1. ((a)-(c)) and ((d)-(f)), 
respectively, at different temperatures. The prediction responses 
obtained from the simulations correspond well with the experimental 
data, as seen in Fig.1. The error is limited to 7% in most of the test 
except in some cases in the middle and final part of the test where the 
error spikes above 7%.

Table 1 clearly shows the sensitivity of the model parameters to 
the varying operating conditions, particularly temperature. As the 
temperature increases cell resistance decreases, while the reaction 
rate constants of the positive and negative electrodes increase. Due 
to strong interactions with other factors, the solid-state diffusion 
coefficients of the positive and negative electrodes show no 
correlation with the temperature. 

Discussion
The cell’s internal resistance and reaction rate constants (of the 
anode and the cathode) are expected to decrease and increase 
with temperature, respectively. These relevant trends are captured 
through our simulations. In general, the diffusion coefficient for 
both positive and negative electrodes is expected to decrease 
with temperature, which was not observed in our simulations, thus 
requiring further investigation. In addition, larger deviations are 

Optimization parameters Initial values
Optimized parameter values obtained at

0°C 25°C 40°C

Internal resistance (mΩ) 2 1.91 1.65 1.46

Positive electrode diffusion 
coefficient (m2/s)

3 x 10-15 3.0251 x 10-15 2.9586 x 10-15 3.0006 x 10-15

Negative electrode diffusion 
coefficient (m2/s)

2 x 10-14 1.9547 x 10-14 2.0781 x 10-14 2.0551 x 10-14

Positive electrode reaction rate 
constant (mol1.5/m5.5)

2 x 10-6 2.3384 x 10-6 2.8279 x 10-6 2.9302 x 10-6

Negative electrode reaction rate 
constant (mol1.5/m5.5)

4 x 10-7 6.1249 x 10-7 7.8374 x 10-7 8.1862 x 10-7

Table 1: Optimization parameters obtained at various temperatures.

About oorja 
Headquartered in Bangalore in India, oorja aims to empower 
automotive companies to design better batteries. Through a 
first of its kind cutting-edge technology that combines the best 
of Machine Learning and Physics, oorja enables automotive 
OEMs to make informed decisions to optimize battery packs 
by reducing time to market and costs.
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observed in the voltages mounted to the lower SoC. This is due to 
the low sensitivity of the SoC to open circuit voltage (OCV). During 
regularization, higher weights can be used at low SoC to improve the 
quality of the fit. 

Conclusion
This work shows the successful identification of the Goldilocks 
Zone for electrochemical parameters using the HPPC data. The 
optimization parameters show good physical trends with respect 
to temperature sensitivity. Furthermore, the comparison of voltage 
responses between predicted and experiment data shows a good 
match. 

The accuracy of the parameters is also sensitive to the load on the 
different parts of the HPPC pulses. Further improvements can be 
made by adjusting of the individual error terms. 

In the present method oorja regularizes the parameters obtained on 
different SoCs to obtain a set of parameters representing the cell for 
the SoC range. The weight of the regularization can be controlled 
to make the parameters dependent on the SoC. This will improve 
the adaptation to different states of charge. Moreover, in the current 
exercise, the cell design parameters are taken from the literature, 
and the accuracy of fit can be further improved by using design 
parameters obtained from the cell measurements. 

Fig. 1. Comparison of responses obtained from simulation and experiment for the HPPC data set at 0°C, 25°C, and 40°C are shown in (a)-(c). The error plots, showing the error 
between the experimental data and model prediction, are shown in (d)-(f).
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