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The design optimization of 
a small axial turbine with 
millions of configurations 
The case for computerized optimization over 
manual design interventions

Expendable, miniature, low-cost turbojet 
engines are often equipped with axial 
turbines. These turbines usually have a 
low-pressure ratio, a simple design of 
the blades and vanes, and a relatively 
low performance. In this article, we show 
that the main turbine characteristics, such 
as efficiency and exit flow angle, can be 
sufficiently improved using parametric 
optimization. Using a fast code for mean-
line turbine design in modeFRONTIER’s 
optimization environment allowed us to 
check about two million configurations 
and to determine the most important 
design parameters.
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Introduction
Increasing worldwide interest in expendable, low-cost turbojet 
engines for both civil and military purposes has led to the design 
and production of many miniature turbojet engines by companies 
and groups of enthusiasts in Germany, the UK, Spain, Taiwan, 
Denmark, Australia, the Netherlands, the USA, Russia, Japan, 
Israel and other countries [1]. These engines are usually equipped 
with a small low-pressure turbocharged centrifugal compressor 
driven by a low-pressure ratio, one-stage, axial turbine. Their 
engine performance is also quite low, with the specific fuel 
consumption (SFC) being in the range of 1.3-2.0 kilograms of 
fuel per kilogram of force (kg/kgf).
The large relative aerodynamic losses due to the small size of 
the components are responsible for the low performance of 
these miniature turbojet engines. On the other hand, the main 
components of these engines are usually not optimized 
because of the low cost of the engines and of their 
design.
This article describes a simple method to optimize 
the performance of a small axial turbine during the 
preliminary design stage by using a fast mean-line 
design code with the modeFRONTIER optimization 
software and a well-established genetic algorithm 

Mean-line axial-flow turbine analysis
The layout of a miniature turbojet engine is shown 
schematically in Figure 1. Its main elements are a 
centrifugal compressor, a combustion chamber, an axial power 
turbine, and a converging propelling nozzle. A compressor 
increases the air pressure and pushes the air towards the 
combustion chamber, where the air temperature raises due to fuel 

combustion. These hot gases in the turbine produce the power 
to drive the compressor. They are then expelled through the 
propelling nozzle to produce the engine thrust.

The main objectives of a turbine’s design are to convert the 
kinetic energy of the gas into the shaft power with maximum 
efficiency and to provide an axial non-swirling exit of the gas into 
the propelling nozzle. Additional objectives are withstanding the 
mechanical and thermal stresses, a necessary safety margin from 
resonance conditions, manufacturability, smooth blade profiles, 

etc. The power turbine in a miniature turbojet engine is usually a 
one-stage axial turbine, shown schematically in Figure 2. These 
turbines consist of static vanes that direct the flow into the rotating 
blades at the correct angle to provide momentum to the shaft. For 

maximum turbine efficiency, the vanes and the blades must be 
perfectly aerodynamically matched. This is achieved by means 
of the careful design of the geometry of the vanes and the blades, 
known as mean-line analysis. 

Turbine design is a multi-stage process where the first stage 
includes the analysis of mean-line performance, the setting of the 
turbine dimensions, the definition of the blade inlet-outlet angle, 
the selection of an aerodynamic loss model, and the efficiency 
calculation. The design of the vanes and blades is also subject 
to additional constraints, such as the profile smoothness. To 
obtain a high-quality preliminary turbine design, we used a two-
dimensional calculation of the turbine parameters at five sections 
along the blade, instead of the usual one-dimensional, mean-
line analysis at the median radius. Since a large number of input 
parameters affect the turbine’s performance and the flow’s exit 
angle, we used a multi-objective, multi-constraint and multi-
variable optimization to improve the turbine’s performance at this 
stage.

Axial turbine thermodynamic analysis is based on an enthalpy-
entropy diagram of the process of gas expansion in the turbine 
stage, as shown in Figure 3. The relationships between the turbine 
parameters are determined by the geometry of the vanes and 
blades and of the velocity triangles, as presented in Figure 4. 
We varied these velocity triangles with each blade/vane section, 
while a profile stacking around a center of mass, shown in Figure 

Fig. 1 - Miniature turbojet engine layout

Fig. 2 - Axial turbine schematic and construction

Fig. 3 - Expansion through the turbine stage Fig. 4 - Vane and blade schematic
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5, allowed us to reduce the blade/vane stresses and to achieve 
better turbine performance. Profile stacking produces a quasi-
three-dimensional form in the vanes and blades, which generates 
a significant improvement compared to the one-dimensional 
design of the median radius.

The fast Fortran-compiled, in-house code for two-dimensional 
mean-line analysis of an axial-flow turbine written by the late 
R. Priampolsky was used for this project. The program input file 
includes a large number of parameters, such as turbine mass flow 
rate, stage inlet temperature and pressure, obtained at the outlet 
of the combustion chamber, outlet pressure, pressure recovery 
in the inlet duct, gas properties, rotational speed, the hub and tip 
radiuses of the vanes and blades, their numbers, radial clearance, 
hub leakage temperature, inlet angles, outlet velocity coefficients, 
preliminary estimates of velocity loss coefficients, and blade 
profile characteristics. In addition, the vane and blade inlet and 
outlet angles, and trailing edge thicknesses are provided for 
each of the five radial sections. All this data is provided in the 
constant textual tabular form that allows the optimization model to 
conveniently change all the input parameters.
Mean-line turbine analysis uses the appropriate losses model 
and conventional blade/vane shapes, and provides the user 
with the radial distribution of the velocity triangles, pressures, 
temperatures, densities, etc. Turbine power, friction losses, stress 
at the hub and efficiency are also calculated and written into the 
output ASCII file.
A reliable model of the energy losses in the flow path of an 
axial-flow turbine allows the accurate prediction of the turbine’s 
characteristics in 1D and 2D mean-line analysis. As mentioned in 
[2], more than ten complex models are known today, together with 
dozens of equations calculating the different loss components. 
These models and loss equations have been obtained over the 
last 70 years by researchers around the world. The authors of [2] 
analyzed the results of experimental investigations of the profile 

losses for more than 170 non-swirling cascades of axial turbines 
with a constant height section. These experiments were performed 
by several gas turbine manufacturers from the former USSR for 
many axial-flow turbine blade profiles used in aircraft gas turbine 
engines. Based on this data, the accuracy of the five most popular 
loss models was compared and summarized in [3]. As was shown, 
the CIAM model of axial-flow turbine losses is the best of the five 
popular models for a wide range of turbines from the perspective 
of maximum error and standard deviation. Therefore, we used this 
model for the present analysis.

Optimization module
The code for a 2D axial turbine mean-line analysis is written in 
Fortran IV and compiled into an executable (exe) file. This code 
includes 19 subroutines including the CIAM empirical loss model 
and is able to treat both subsonic and supersonic flow conditions 
in the turbine. After initiation, the executable file reads the input 
file, performs the calculations and writes the results into a 
formatted output file in ASCII format.

The optimization of the turbine’s performance was undertaken 
using the modeFRONTIER (mF) tool, developed by ESTECO. A 
general layout of the optimization model is shown in Figure 6. The 
mF workspace consists of five main blocks: the input parameters 
block, including the constraints; the design of experiments (DoE) 
block, where the initial (parent) population of parameters is 
randomly chosen; the optimizer block, where the initial parameters 
are changed; the execution block that produces the output file; the 
target block with the constraints on the output parameters. The 
input and output files are connected by the user-defined node 
that allows the user to perform command-line operations on the 
executable file.

In the present study, the multi-objective genetic algorithm 
(MOGA-II) was used to treat a large number of input parameters 

Fig. 5 - Blade sections and profiles stacking

Fig. 6 - Optimization model

Fig. 7 - Optimization with N>1,000,000 designs

Fig. 8 - Pareto designs (first optimization)
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and the numerous constraints on the output parameters. Two 
design objectives were defined: the turbine’s thermodynamic 
efficiency, and the mean flow angle at the turbine’s outlet. A 
minimal swirl of the outlet flow allows maximum thrust to be 
developed in the turbojet engine’s propelling nozzle. Our model 
included 33 input variables and 20 output parameters, including 
turbine efficiency, shaft power and the blade stress estimation. 
The model under consideration works under the limitations of 
139 constraints including 66 min/max constraints on the input 
variables, 38 constraints on the geometrical interactions, 15 
constraints on the monotony of the radial vane/blade profiles and 
stacking, and the 2 design objectives namely the requirements 
for the mass flow rate and the turbine power. Among other 
limitations was the requirement for the number of vanes and 
blades to be a prime number to reduce the likelihood of harmful 
resonances. It should be noted that, at the preliminary stage of the 
manual analysis by a very experienced designer, this constraint 
prevented the attainment of an acceptable level of efficiency 
and was omitted. The limitation was returned and fulfilled by the 
computerized optimization process. Based on the large number 
of initial variables, and to obtain a representative variability in 
the initial (parent) population, 10,001 DoE sets of variables were 
formed using the Sobol deterministic DoE algorithm. The Sobol 
algorithm mimics a random choice to obtain a uniform sampling 
of the design space and to reduce the clustering of parameters. 
The output parameters were also limited by the defined power of 
the turbine and the degree of reaction at each section. A total of 18 
constraints limited the output.

Because of the large dimension of the problem and the complexity 
of the constraints, the optimization was performed using the 
MOGA-II genetic algorithm. The elitism procedure of this 
algorithm, which preserves excellence, ensures that each new 
generation’s performance is greater than the performance of its 
parent generation.

Results
At the first attempt, the optimization model was run through 
126 generations to produce 1,259,049 designs. Because of the 
strict constraints on the output parameters, only 188,340 of the 
designs (about 15%) were feasible. Figure 7 clearly demonstrates 
the superiority of the computerized optimization over the manual 
design. Figure 8 shows the Pareto frontier of the best designs from 

the first optimization, which generated a 1.9% performance gain 
in efficiency and 9 degrees of the exit angle. The Pareto graph 
shows a few discontinuities that clearly demonstrate the non-
linear nature of this problem and the advantage of using a genetic 
algorithm in this case. Despite the success of the first phase of the 
turbine design, a more rigorous analysis of the optimized designs 
presented in Figure 8 revealed unexpectedly large angles of attack 
(DBeta1) between the blades and the gas flow (up to 20 degrees). 
The problem, here, is that the turbine loss model has not been 
validated at such angles, so another limiting condition was added 

were calculated using the Non-dominated sorting genetic 
algorithm II (NSGA-II). According to mF [4], NSGA-II implements 
the crowding distance approach which guarantees the diversity 
and spread of the solutions on the Pareto front by estimating the 

density of the solutions in the objective space and guiding the 
selection process towards a uniform spread. The points belonging 
to the same front are sorted such that a higher ranking is given to 
the points located in the less populated regions of the front. Since 
this sorting demands additional calculations, we used the NSGA-II 
algorithm because of the smaller population. No advantage over 
the MOGA-II algorithm was observed.

After the addition of a constraint on the blade’s angle of attack, 
only 23,030 feasible designs were obtained (about 10%) from 
this second optimization. Figure 9 shows that the best efficiency 
reached was 85.4%, which reduced to 85.2% when the exit angle 
was above 80 degrees (generally, the exit angle should be close 
to 90 degrees). 
Figure 10 shows the Pareto frontier of the best designs from the 
second optimization. A prime number of vanes (23) and blades 
(31) was obtained, with a potential performance gain of up to 
1.5% in efficiency and 6 degrees of the exit angle.
To maximize the efficiency of the optimized turbine, another 
546,000 designs were calculated under the following conditions:

 Vane number ZN=23 (primary number);
 Blade number ZM=29 & 31 (primary numbers);
 Exit angle limited by 80 degrees;
 Maximum efficiency was the only target.

These additional conditions reduced the number of design 
variables and objectives, making it easier to find a solution. 

Fig. 9 - Optimization with limited blade angle of attack

Fig. 10 - Pareto designs (second optimization)
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As a result, the turbine’s efficiency was improved up to 85.5% 
(see Figure 11). As one can see, the main gain in the turbine’s 
efficiency was already achieved after 20-30,000 designs, while 
a very moderate, but clear improvement was obtained after that.
As already mentioned, 33 input variables were used in the design 
of the small axial-flow turbine. Obviously, not all these parameters 
equally affecting the turbine’s performance. A sensitivity analysis 
was performed using the mF tool [4] to detect the most important 
input variables. This enabled the exclusion of certain variables 

from the optimization, reducing the required computational 
effort. This analysis is particularly useful to better understand the 
physical model. In particular, sensitivity analysis functions can be 
used in the Response surface method (RSM) training process. 

Figure 12 illustrates some of the sensitivity analysis results. The 
following 7 of the 33 parameters were responsible for 80% of the 
efficiency variation:

 BETA1K – blade inlet angle
 BETA2K – blade exit angle
 RNTIP – stator tip radius
 LW2AD – relative rotor exits Mach number 
 L1AD – absolute stator exit Mach number 
 ALFA1K – stator exit angle

The second section from the turbine disk, next to the hub, was 
found to be the most important section for maximum efficiency.

It is to be noted that the huge amount of data generated through the 
optimization process becomes difficult to treat: we found that the 
mF operations in the working table became slow at about 500,000 
designs. Large tables cannot be treated by MS Excel due to its 
limit of 1,048,576 rows and 32,000 graph points. The optimization 

process was therefore split to cater for these limitations, and only 
the feasible designs were treated in post-processing analysis.

As a result of the optimization, the turbine exit angle was improved 
by 2÷6 degrees, while the efficiency was increased by 1.5%. One 
may question how meaningful this result is. Visual inspection 
of Figure 7 demonstrates a sufficient improvement in optimized 
efficiency compared to the manual design that was based on a 
few dozen attempts by a turbine design expert. However, some 
quantitative estimation of the performance improvement gained 
through the optimization is desirable. To this end, we used the 
classical Smith chart [5], which is a map that describes the 
empirical correlations between the efficiency of the state-of-the-
art axial turbine stages, and the loading and flow coefficients, and 
which is widely accepted as feasible for use during preliminary 
turbine design. According to the Smith chart, the turbine 
efficiency achieved with the manual design was about 4% below 
the maximum efficiency of the axial turbine under consideration. 
This meant that the efficiency improvement of 1.5% achieved with 
design optimization had closed about 40% of the potential gain in 
turbine efficiency. Other measures, such as the advanced blade 
geometries, hub and tip contouring, abradable seals, stacking, 
and 3D blade design can close the remaining gap.

Conclusion
Fast computer code and the advanced modeFRONTIER 
optimization and analysis tools allowed us to perform an 
optimal mean-line design of a small axial turbine with more than 
2,000,000 configurations. The time that was spent on this project, 
about 80 work hours, is usually sufficient to manually check a 
few dozen designs only. 33 parameters and 139 constrains were 
taken into account. The turbine exit angle was improved by 2÷6 
degrees, and its efficiency was increased by 1.5%, closing about 
40% of the potential efficiency gain for this type of turbine. We 
recommend using mF models with no more than 500,000 designs 
simultaneously.
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Fig. 11 - Efficiency-only optimization

Fig. 12 - Sensitivity analysis


