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The widespread proliferation of wind turbines for power generation is driving the de-
velopment of devices that are both efficient and minimally disruptive to surrounding com-
munities. Optimized configurations can become ineffective in the presence of unexpected
operating scenarios, for example in the presence of insect or dust contamination, thus
requiring recalibration and adjustments. Robust design procedures aim at limiting the po-
tential impact of uncertainties on performance and are an effective risk-mitigation strategy.
In this work a wind turbine multi-physics simulation tool — FOLO — that represents the
aerodynamic loading, realistic turbulent wind scenarios, fluid-structural interactions and
acoustics is presented. The geometrical configuration of a realistic turbine is optimized un-
der insect contamination (input uncertainty) using a novel Simplex Stochastic Collocation
(SSC) method. This methodology provides a wealth of information regarding the overall
performance statistics (output uncertainties) and forms the basis for the exploration of
several robust design options. We introduce a new process that extends the usual concept
of variance minimization. The proposed robust design strategy is coupled to a customized
multi-objective genetic algorithm. The overall process requires a large number of compu-
tations and therefore we developed a simulation environment— LELAND —to carry out these
analysis on large scale parallel clusters. Leland is a dynamic scheduler that starting from a
small initial set of computations automatically selects the new candidate simulations to be
performed to increase the efficiency of both the optimization procedure and the uncertainty
quantification method.

I. Introduction and motivations

Wind turbine design continues to receive considerable attention due to the desire to increase energy pro-
duction while limiting the environmental impact. Large scale horizontal turbines have benefitted considerably
from the use of simulation tools and computational optimization;' analysis ranging from the geometrical de-
sign of turbine sections? to control strategies to maximize the energy capture® have appeared in the literature,
among many other works.

Most applications of optimization typically ignore the presence of uncertainties in both the environmen-
tal conditions, the blade geometry and structural properties. Rigorous quantification of the impact of such
uncertainties can fundamentally improve the state-of-the-art in computational predictions and, as a result,
provide aid in the design of more cost-effective devices. In this work we focus on geometrical perturbations
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induced by dust or insect contamination, although the methodology used can be extended without modifica-
tions to the other types of uncertainties.® We represent the uncertainty as purely stochastic, i.e. a measure
of variability and our goal is to establish quantitatively its effect on multiple metrics, namely the power
coefficient and the overall noise level. The computational procedure is obviously modified by the presence
of uncertainty, but more importantly we explore novel approaches to reformulate the optimization process
in this context. One of the important contributions of this paper is the introduction of a novel optimization
concept based on the overall probabilistic description of the turbine performance under uncertainty, instead
of limiting the analysis to a characterization of the low-order statistical moments (expected performance and
its variance).*

The present multi-phsycs computational framework constructed around tools developed mainly at the
National Renewable Energy Laboratory (NREL). These tools are essentially deterministic: once the wind-
turbine configuration and other input conditions are specified, the solution is uniquely determined. On the
other hand, when uncertainties are present, the results are expressed statistically, e.g. as random variables.
The computations become probabilistic in nature and it is necessary to propagate the input variability into
the output of interest. The approach we follow here is strictly non-intrusive, in the sense that the existing
tools are used without modifications, but the solution - or more precisely, its probability distribution - is
constructed performing an ensemble of deterministic analyses. The input uncertainty is derived from insect
contamination data available in the literature and its main effect is to impact the location of the transition
from laminar to turbulent flow over the turbine blade. The optimization process is based on a parametrization
of the blade cross-sections and is based on a genetic algorithm.

The paper is organized as followed. The computational framework developed and tested in the present
work is illustrated in Section IT. Additionally, the cost increase of multiple multi-physics simulations justifies
the adoption of a meta-scheduler like Leland, presented in section V. In Section ITT we describe the Simplex
Stochastic Collocation (SSC) method as a suitable choice to couple with the optimization process described
in Section TV. In Section VI we gather information from literature regarding insect contamination and show
in Section VII its impact on both aerodynamic performance and noise and show in Section VIII the overall
effect on the optimization process.

II. EOLO: a multi-physics low-order model for wind turbines

Wind turbines are multi-physics devices in which the aerodynamic performance, the structural integrity
of the blades, the energy conversion toolbox and the acoustic impact have to be carefully examined to achieve
an effective design. Each one of these factors introduces considerable complexity if detailed simulations are
needed. The aerodynamic performance is dominated by the design of the blade cross-sections. The sections
are typically laminar flow airfoils use to reduce the overall drag. The flow characterization is complicated by
the need to predict laminar/turbulent transition under a variety of clean and perturbed wind conditions, the
inherent angle of attack variability associated with rotation, the presence of dynamic stall, aeroelasticity, etc.
In spite of the development of advanced computational fluid dynamic tools that can predict with reasonable
accuracy the aerodynamic performance of rotors,” the computations remain extremely expensive and often
rely on simple models to capture important effects, such as transition, and are generally not considered to
be predictive for extreme events such as stall. In this work, we focus on building a flexible computational
infrastructure based on low-fidelity models that are connected together in a matlab environment EOLO.S
There are two main advantages resulting from this choice: i) control and flexibility in using different models
developed for capturing complex phenomena, 7i) low computational cost. It is the second advantage that
fundamentally enables us to perform analysis under uncertainty. The flow-chart of the simulation tools is
described in details in our previous work.® The performance metrics used in the following analysis are the
power coefficient and the overall noise level. Representative results corresponding to these two metrics are
reported in Fig. 1.

III. Uncertainty analysis

The simulation environment described above can be used effectively to study wind turbine performance
in the absence of uncertainties. As mentioned earlier we limit our analysis to uncertainties that can be de-
scribed using random variables (aleatory uncertainties) and, therefore, our goal is to construct a probabilistic
framework around the EOLQ environment. The most straightforward choice is to perform Monte Carlo (MC)
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Figure 1. Metrics of interest in the design under uncertainty.

sampling in which many deterministic simulations corresponding to randomly chosen input conditions are
performed and a statistical characterization is obtained directly from this ensemble. It is well known that
typically a very large ensemble is required to achieve convergence of the statistics of the quantities of interest.
We introduce an alternative approach that allows us to obtain equivalent results using a limited number of
EOLO simulations. In the following we generally refer to the input uncertain variables as ¢ and refer to the
space spanned by these variables as the parameter (or probability) space to distinguish it from the physical
variable space.

The method used in this work is the Simplex Stochastic Collocation (SSC) approach and it is described in
detail in previous works.”*® Here we only provides a brief description. SSC uses an initial number of solutions
(sampling points) corresponding to different random evaluations of the input parameters and builds a set
of non-overlapping simplex elements using a Delaunay triangulation. In each simplex, a response surface of
the quantity of interest is built using a polynomial reconstruction. Higher order polynomials are used if the
surface is smooth and criteria mutuated from extreme diminishing principles are used to ensure the absence
of overshoots.”

The initial samples are located at the extrema of the parameter range and at the nominal conditions, see
Figure 2a for a two-dimensional example. The discretization is adaptively refined by calculating a refinement
measure that combines curvature information and probability mass in each of the simplexes.

A new sampling point is then added randomly in the simplex with the highest measure and the Delaunay
triangulation is updated. The sample is confined to a sub-domain of the simplex to ensure a good spread
of the sampling points, see Figure 2a. The refinement to ng = 17 samples, shown in Figure 2, leads to a
super-linear convergence by increasing the overall polynomial degree of the reconstructions.

The refinement procedure is parallelized by refining a number of simplexes with the highest refinement
measure simultaneously. The sampling procedure is stopped when a global error estimate achieves a suffi-
ciently low tolerance; this estimate is based on the concept of hierarchical surplus.”
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Figure 2. Simplex Stochastic Collocation discretization of a two—dimensional probability space.
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In the wind turbine simulations and other large-scale problems, it is possible that one of the deterministic
computations for a specific sample of the random parameters does not converge or gives an unrealistic
result. This situation creates no problem to the SSC because of the flexibility of the randomized refinement
sampling. The failed computation is automatically replaces with another randomly selected point in the
simplex element to be refined. If the failed sample is located in the initial discretization at one of the
parameter range extrema, an extrapolation is used to extend the reconstructed surfaces from the other
simplexes. In the analysis performed in this paper, this has proven to be an effective approach for dealing
with erroneous samples.

IV. Optimization strategy

IV.A. Genetic Algorithms

The optimization strategy is based on well-known Genetic Algorithms®® (or GAs). A GA consists of i) a
finite population of individuals of an assigned size - each of them usually encoded as a string of bits named
genotype, ii) an adaptive function, called fitness - this provides a measure of the individual to adapt to the
environment, an estimate of the quality of the solution, and an indication on the individuals most likely to
reproduce, and iii) semi-random genetic operators such as selection crossover and mutation - these operate
on the genotype expression of individuals, changing their associated fitness.

In general, the GA optimization process requires the definition of a potentially large number of candidate
design and the evaluation of the corresponding solutions. Successive generation of candidate design are con-
sidered until no further improvement is obtained. From a computational point of view both the uncertainty
quantification and the optimization procedures require the management of large ensemble of nearly identical
simulation. In the next section we describe an efficient computational framework to handle these ensemble;
in the following subsections we describe in details the optimization problem and the concept of robustness.

IV.B. Definition of the shape optimization problem

We follow Zhong and Qiao’s work?>® and use B-splines to parameterize the geometry. Specifically, we consider
fifth order B-splines with a nominal uniform knot set to represent both the cross-sections of the turbine blades
and the distribution of the chord and twist along the span. The geometry of the base airfoils is given by the
following equations

ny
f=fo+d PNi(X) (1)
1
ngt+ng
g=g+ Y PNi(X) (2)
ny+1

where f and g are the upper and bottom surface, fy and gg are the initial bottom and upper surface, P; are
the control points of the B-splines and N;(X) are the B-spline basis functions. Three geometrical constraints
are enforced: the first is to avoid intersections of the upper and lower airfoil surfaces, the second is to reduce
the changes in curvature in either the upper or lower surface of the airfoil, and the third is for to enforce a
maximum thickness of the airfoils.

The chord and twist distributions are also parametrized similarly using B-splines:

ne

0=00+ > PN;(X) (3)
1
Nechord
chord = chordy + » | P;N;(X) (4)
1

where 6 and chord are the distribution of twist and chords after optimization, 6y and chordy are the initial
distribution of twist and chords, P; are the control points of the B-splines and N;(X) are the B-spline basis
functions. The degree of the B-splines chosen for twist and chord optimization is three. It should be noted
that when all the control points of the airfoil parametrization and of the chord and twist distribution have
zero values the original shape is returned.
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The optimization process (in the absence of uncertainties) uses an in-house non-dominated sorting GA
(NSGA) algorithm that considers as objectives the maximization of the averaged power coefficient over the
last minute of the simulation [-] and the minimization of the Overall Sound Pressure Level [dB] at the
observer location.

IV.C. Robust Optimization

The concept of robust optimization is intuitively connected to the idea that in the presence of (input)
uncertainty the optimal design should be relatively insensitive (small output uncertainty). We will review
three commonly used robustness principle before introducing a novel, and more general, definition. The
three strategies can be simply considered as variants of constraint and non-constraint optimization and an
extension of multiobjective optimization.

Let’s consider an objective function in the form f(z,£) where z € Z represents a design variable and
& € Q represents the input uncertainty (which can be either a design variable or another parameter in the
problem). A minimization problem is formulated in general as: find zZ € Z such that

[z < f(z,¢) VzeZ Ve (5)

A robust design is defined as one whose performance remains relatively unchanged (and feasible) in the
presence of uncertainty. In a probabilistic framework for uncertainty analysis (such as the one introduced
earlier) the problem is that f(z,£) is a random quantity induced by &. Tt is possible to introduce an operator
@, applied to f(z,€) in order to obtain a real-valued attribute of it, reducing the problem to finding z € Z
such that

(f(z,6) < 0(f(2,¢) Vze€Z (6)

Different definition for ® might be used, for example ®(f(z,&)) are the statistical moments of f. The
simplest choice is obviously the expected value of f: (referred to as Bayes Principle®” ):

B (f(2.6) = /Q F(2,€)Wedé = p(2) (7)

where W, is the probability density function of . Other (higher order) moments can be used (Mean Value
Penalty Optimization):

N 1/2
@ (f(2,€) = wip(z) + (Z wym® (f(%f))) (8)
k=2

where w1, ...,wy are (tunable) weights, N is the maximum order of statistical moments considered and
mF (f(z,€)) is the k-th order moment of f(z,£)

(7€) = [ (£(€) = n(2))* wede 9)
Q
which leads to (for w; = ws =1 and N = 2)

O (f(2,6) = uz) +o(2) (10)

where 02 (z) is the variance of f(z,€). In this case the optimization under uncertainty seeks to minimize
the mean plus standard deviation, giving a formal and mathematically sound construction for the idea of
insensitive design.
Another approach, interpreted as a Constrained Optimization, can be formulated in finding z € Z
such that
wz) < puz) VzeZ (11)
s.to: mk (f(2,€) < Cy Vk € 2,N

where CY, is a constraint on the the order k central moment of f(z,£). Again for N=2 this procedure reduces
in finding Z € Z such that

(12)

w(Zz) <uz) VzeZ
s.to: 0% (z) <o*
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where o* is the maximum value allowed for the variance.
Finally, a fourth approach formulates the problem as a Multi-objective Approach in the form

min p(z)
- (13)
minm (f(z,€) VEe2,N
which for N=2 becomes
min u(2)
Zo, (14)
mino (2)

IV.D. A novel CDF based approach

In the previous approaches the objective function is transformed into a different form in order to eliminate
its random character (reduce the dependency on &). One of the consequences is that typically only the
mean and the variance of the objective function are considered in the process, thus potentially eliminating
important characteristics of its probabilistic description (only for a Gaussian random variable the mean and
the variance completely describe the overall distribution). The goal of the approach proposed here is to
i) avoid any assumptions on the type of the objective function i.e. Gaussianity and ii) avoid increasing
the dimensionality of problem (as in the multiobjective robust optimization). Let us assume a reference
solution, namely the RAO (Reference Absolute Optimum), which we define as the inferior limit of the
objective function in the presence of uncertainties and which corresponds to an ideal deterministic optimum

RAO = inf f(2,€) (15)

The ideal solution of a problem of optimization under uncertainty is a design that ensures the lowest
possible value of the objective function (the RAO) with no sensitivity on the uncertain quantities.

COF

CDF

RRO=int, .
A

] -3

fiz.2)

fiz)

(a) The shaded area is the RI for candidate design A (b) The shaded area is the RI for candidate design B

Figure 3. CDF based measure of robustness

In terms of the Cumulative Density Function (CDF) the RAO is represented by a vertical line and
assumed to be a reference for the proposed method. Every actual design, being subject to uncertainty, will
be represented by a distribution with a non-zero support. The main concept we introduce is to identify a
measure of the difference between the CDFs of the RAO and any other design to direct the optimization
process. Many possible measures of distance between distributions can be considered; here we use the area
metric,”! also referred to as the Minkowski L; metric; the area between the CDF of the RAO and the CDF
of the candidate design, F(z), is the measure of the mismatch between them and gives information about
the robustness of the candidate design (RI - Robustness Index).

inf
RI(z) = / IF(2) - 6.(RAO)| de (16)

— inf
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where 0, is the Dirac delta function. The RI generalizes the deterministic comparison of scalar values that
have no uncertainty or the difference between statistical moments (as used in many robust optimization
algortihms); if the candidate design is deterministic, the CDF is a Dirac function centered on one value (like
it is for RAO or any scalar point values) and in this case the area is equal to the difference between two
scalar values. The RI will tend not to be overly sensitive to minor discrepancies in the distribution tails
(assuming the area is finite), because it reflects the full distribution of the scalar point values. In particular,
it is clearly not merely a measure of the difference in the means and/or variances, but takes into account
the overall difference between distributions. Another useful property of this measure, is that its units are
are identical to the objective function units. This property is useful in i) the ranking process (as shown in
the next section) and to ii) make the measure is intuitively meaningful. Using the concept of area measure,
the robust optimum can be formulated to finding Z € Z such that

RI(Z) < RI(z) Vz€ Z (17)

which for RI(z)=0 returns the ideal design corresponding to the RAO.

IV.E. Probabilistic rank

The definition of the RI introduced above can be also adopted to construct the optimization algorithm,
specifically in the context of multi-obejctive GA, we can extend the concept of ranking by introducing the
area metric. For each generation we assume the reference solution to be the one that dominates all others
(i.e. rank equal to 1) and assume its CDF to be deterministic, as for the ROA. We define the probabilistic
rank as

rankp(z) =1+ RI(2) (18)

The population of solutions corresponding to each generation is sorted using rankp(z) (as a first criterion),
obtaining a non integer value for the rank. This introduces additional information related to the uncertainty
in the GA.

RI=2.35
RI=2
w w
3 =]
© o
— |50-raNk=1 — Iswar!k=l
[ Rl design, | Ridesign,
| Ridesign, [ |Ridesign,
—— design, design,
e 2SN, desian,
¢ 1 2 3 4 5 ° 1 2 3 4 5
rank (z) rank (z)
(a) The rankp for candidate design 1 is 3.35 (b) The rankp for candidate design 2 is 3

Figure 4. Probabilistic rank

IV.F. Probabilistic non-domination sorting

The original NSGA-II algorithm®® constructs the sorting procedure of the candidate designs using the rank
and the crowding distance operators. The aim of the proposed procedure is to obtain an algorithm which
generalizes these operators. As a direct consequence of the introduction of the probabilistic rank, we can
assume all the designs falling between two contiguous integer values of the probabilistic rank to have a
similar probabilistic domination in the Pareto sense (i.e the original discrete layers of dominations become
continuous). In each continuous "layer" we can use in sequence i) the non-integer part of the rank and ii) a
mean measure of the crowding distance to distinguish among designs - we can cluster points where the RI is
lower (enhanced probabilistic domination) while preserving density and coverage. In the case of a population
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of deterministic candidate designs, the probabilistic rank reduces to the its deterministic counterpart (i.e.
integer) and the mean crowding distance reduces to the crowding distance.
IV.G. Analytic test case

In this subsection we compare the results obtained with the Bayes Principle and the Mean Value penalized
by the standard deviation, with the proposed probabilistic sorting on the following multi-objective test case

f1(2,6) = (1(2,6) = 1)? + (11(2,€) — y2(2,6))? (19)
f2(27€) = (y2(za£) - 3)2 + (yl(zvg) - y2(27£))2 (20)
where
yi(2,8) =&+ & x 2 (21)
y2(2,8) = & + 8 x 22 (22)

The characteristics of the design variables and uncertainties are listed in Table 1.

Table 1. Amnalytic test case: design variables and uncertainties

Label Type Distribution Range
21 design variable [-5,5]
29 design variable [-5, 5]
& uncertain variable uniform [—0.3,0.2]
& uncertain variable uniform [—0.2,0.3]
&5 uncertain variable uniform [—0.9,1.2]
& uncertain variable uniform [-0.8,1.1]

The mean value and the mean value penalized by the standard deviation condense all the information of
the objective function probability distributions into a single value; further statistical details are not used in
the optimization process. The Pareto front corresponding to the analytic test function are similar in shape
to their deterministic equivalent and no further information about the best design can be extracted from the
front as shown in Figure 5.a.

P-rank Pareto "layer"

penalty Pareto
mean Pareto min RI(0.255)

deterministic Pareto deterministic Pareto

D l “' II~ 0000
. DEDD:“IDD pmm 0 . . o B s

o 05 1 15 2 25 3 35 4 45 0 05 115 25 3 35 4 45
f, fi
(a) Pareto front corresponding to deterministic scenarios (b) Pareto front using probabilistic sorting
and obtained using mean value and mean value penalized
optimization

Figure 5. Analytic test case

The Pareto front constructed using the probabilistic sorting approach consists of a family of clouds (i.e.
each cloud represents an uncertain design) characterized by different RI values. The proposed method allows
us to take into account the overall probability distribution and provides an additional criterion to distinguish
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designs on the same layer. In this test case, the red distribution in Figure 5.b represents the lowest RI value
and the corresponding design can be assumed to be the best probabilistic compromise for this optimization
problem. It is extremely clear that the distributions are not Gaussians, hence the mean and the variance do
not sufficiently represent the stochastic behavior of the objective function.

V. A parallel computational framework for robust optimization: Leland

Both the uncertainty quantification methodology and the optimization strategy adopted in this work
require the construction of an ensemble of computations. Due to the high cost of each solution - as it is
common in multi-disciplinary frameworks (i.e. aerodynamics, structure, control, etc.) - we have developed
an environment (hereafter called Leland) for optimal resource allocation on a UNIX multiprocessor cluster.
Its structure is based on a workflow managed via matlab through I/O that explicitly connects the software
tools involved in the process. Leland is designed to run natively on any high-performance computing (HPC)
system, by integrating with the job-submission/queuing system (for example Torque). In Leland a “job” is an
instance of the entire multiphysics simulation, which might include grid generation, morphing, flow solution
and fluid /structure coupling, acoustic analysis and postprocessing. The main objective of Leland is to set-up
a candidate design as a job and to manage it until it is completed in order to gather relevant results that are
used to inform the robust optimization process. The various components of Leland are introduced below.
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ROpt ? Ot i
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pareto frant, etc,,

uncertainties, ete. - i o e
samples %ﬁjeﬂwe&
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number of cores,
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Figure 6. LELAND flowchart

ROpt (robust optimization), shown in figure 6.a, is the engine behind this design environment. Given
the design and/or uncertain input variables, ROpt continuously generates new design proposals (samples)
based on the evolutionary strategy and/or analysis of the uncertainty space, until a convergence criterion is
met. The Job Liaison, shown in figure 6.b, defines the characteristics of each single job and continuously
monitors the progress of the simulations until completion in order to communicate the objective evaluations
back to ROpt. The Job Submission engine, shown in figure 6.c, ensures that the correct number of jobs are
always running on the cluster. The input variables (number of cores, number of jobs, etc.) used to initialize
the runs are dynamic, meaning they can be edited on the fly and the system will respond accordingly.

VI. Sources of uncertainty: insect contamination

72 21,22

Several studies on wind turbines!'” ?° and fixed wings illustrate the effect of insect and dirt contam-
ination on the overall aerodynamic performance. Insects are present in the lower layer of the atmosphere,
with a density rapidly decreasing from ground level to 500 ft. Hardy and Milnecite®?® found that the mor-
phology of insects is a function of altitude and that estimation of the actual contamination depends on the
operating conditions. In wind-turbines the effect of contamination can be particularly strong when the blade
cross-sections are designed to operate in the laminar flow regime. The presence of insect contamination
produces boundary layer disturbances that can lead to early turbulence transition with a deterioration in
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Figure 7. LELAND input file for EOLO

aerodynamic performance. This is the motivation for including insect contamination as a leading cause of
uncertainty in the present analysis of wind turbines.

Crouch et al®® studied the effects of surface protrusions (steps) on the turbulence transition in boundary
layers experimentally. They also modified the e™ method to capture the observed transition modifications,
via a reduction of the critical N-factor:

h

Ncrit = Ncrito - AZ\/vcrit ( 57*)

(23)
where h is the height of the step (i.e. the accumulated insect height)[m], 0* is the boundary layer displacement
thickness at the step location [m], AN,,;; accounts for the local change in the stability characteristics at the
step[-] and N,.;0 is the clean value of the critical N-factor[-].

In this work we assume that the insect impact produces roughness that leads to modification of the
N-factor. We consider three independent variables describing the N-factor ranging from clean conditions
(Nerit = 9) to transition bypass (N.r;+ = 1) at the root, midspan and tip sections of a turbine blade.

VII. Analysis under uncertainty

The AOC 15/50 is a downwind turbine, i.e. its blades rotate downwind of the drive train assembly.
Furthermore, it has no active yaw control and depends on its blades to track the wind. This wind turbine is
the evolution of the rugged and reliable Enertech E44, many of which were installed in the 1980’s and are still
running today. Independent analysis and testing at NREL, the Netherlands Energy Research Foundation
(ECN), RISO Laboratory in Denmark, the Atlantic Wind Test Site (AWTS) on Prince Edward Island
and other sites around the world verify that the AOC 15/50 wind turbine generators are very reliable in
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Figure 8. Effect of critical N-factor on NREL S828 cross-section. Re=1015166.4253, M —=0.1218.

even the harshest weather conditions. The AOC 15/50 is designed for simplicity to minimize maintenance
requirements and to be able to safely operate in normal and extreme conditions. In this section the AOC
15/50 is investigated under uncertainty considering the effect of insect contamination (as described in the
previous section). The EOLO framework is driven by the SSC routines and the uncertainties directly impact
aerodynamic lading computed using Xfoil; the present analysis shown an reduction of up to 16% in the
averaged power coefficient due to the insect contamination with respect to the clean case. It is worth noting
that in the in the literature the effect is even more marked, with up to 50% reduction reported.'”'® This
difference might be due to the present approach used to characterize the effect of the insect contamination.
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Figure 9. Analysis under uncertainty due to Insect contamination: convergence histories of the mean,variance, skewness
and kurtosis of the power coefficient

We compared the predictions using the SSC method with 1000 Monte Carlo realizations illustrating the
considerable improvement in the convergence properties of the statistics of the power coefficient (the noise
levels also show similar trends). In Fig. 9 we report two SSC computations in which the differences are
driven by the randomized adaptive refinement algorithm, to illustrate that the statistics do converge rather
quickly.
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VIII. Optimization under uncertainty

An initial multi-objective optimization (maximize the power coefficient while minimizing the noise) has
been carried out ignoring the insect contamination and the resulting Pareto front is shown in Figure 10.
The baseline blade was already optimized by the manufacturer but due to the steep characteristics of the
Pareto at high power coefficient it was possible to find a trade-off design with considerable less noise. The
population of the GA contained 40 individuals, which evolved for 50 generations.
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Figure 10. Deterministic Pareto front

Successive simulations were performed accounting for uncertainties due to insect contamination. The
deterministic Pareto front was used as initialization for the novel procedure. In Figure 11 a close-up of the
design space close to the previous trade-off design is shown. It is important to notice that in the presence of
uncertainty each new design is actually stochastic and characterized by a number (cloud) of probable results.
This is illustrated in Figure 11.a. A new locus of optimal configurations is extracted (Pareto layer, the first
non-dominated layer of Section TV.F): we refer to the trade-off solution in the presence of uncertainty as the
ROpt (Robust Optimum) design.
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Figure 11. Probabilistic Pareto front [detail]

Tt is interesting to note that the ROpt design does not lie on the deterministic Pareto front and viceversa,
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the deterministic trade-off design does not lie on the probabilistic Pareto layer. Instead, the latter design lies
on the second layer and additionally the mean Trade-off configuration is fully dominated by the ROpt design.
The RI for the ROpt design assumes the lowest value in the population (RI = 0.072) and has been chosen as
a decision making criterion for the probabilistic Pareto front, see Figure 11.b. Moreover, the deterministic
trade-off design has been chosen as the Best Efficient Point®? of the deterministic Pareto front.
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Figure 12. Probabilistic and deterministic trade-off designs

The spread of the ROpt designs suggests a stable solution in the presence of uncertainty since it is more
probable that a design is located at higher values of the averaged power coefficient and the distribution
is rather uniform compared to the trade-off spread, as shown in Figure 12.a. Additionally, the spread of
Overall Sound Pressure Level of the ROpt design is clearly dominating the deterministic trade-off, as shown
in Figure 12.b. It is interesting to notice that the presented novel method returns as result of the process
of robust optimization the optimal design variables and the CDFs of the objective functions: the CDF
represents a complete information in probability about the behavior of the candidate design rather than few
real value attributes given by the other methods discussed in Section IV.
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Figure 13. ROpt design characteristics

The optimized design (red) reveals a significant increase in the length of the chords at the inner part of
the blade, while its twist follows a smoother distribution than the baseline (black) showing higher torsion
closer to the root and tip sections, as shown in Figure 13.b. The optimized airfoils for the ROpt design
are shown in Figure 14 in order to compare them with the baseline solution. Tt is interesting to notice the
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change in the trailing edge at the root section of the blade, which could be related to the noise reduction
and the significant change in curvature of the mid-span airfoil. The tip airfoil reveals a significant increase
in thickness up to 60% of the chord, with a trailing edge very similar to the baseline solution.
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Figure 14. ROpt airfoils
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X. Conclusions

The present study introduces a novel process of optimization of wind turbine blades under uncertainty.
The computations were carried out using a multi-physics model EOLO that included aerodynamic predictions,
comprehensive structural analysis and acoustic estimation. Moreover, we used a high performance meta-
scheduler Leland that allowed us to perform a large ensemble of calculations automatically and efficiently on
a large cluster. Insect contamination is considered as a source of uncertainty and the present methodology
allowed to estimate its effect on aerodynamic performance and noise. We proposed a novel intrusive approach
to couple multi-objective optimization and uncertainty quantification in order to let the latter be a driver in
the shifting of the Pareto Front due to uncertainties. The proposed approach is based on the full probabilistic
description of the objective function under uncertainty and appears promising at overcoming the main
drawbacks of other methods found in literature even if further benchmarks are required. The design obtained
with the novel procedure appears to be more stable in the presence of uncertainty than its deterministic
counterpart, hence the main goal of this work has been successfully achieved.
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