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ABSTRACT 
 
The solidification and cooling dynamic of a metal alloy, in macroscopic terms, can be 

theoretically treated evaluating the different contributions to the heat transfer from the liquid to 

the mould and the external environment [1]. 

Resistances to heat flux, coming from the inside of the die-casting, are generally to be traced 

back to metal solidification, to the die-casting-mould interface and to the mould itself. In the 

die-casting case the heat absorbed from the external environment and the one removed through 

lubrication and blow operations cannot be ignored [2-3]. 

 

The theoretic and scientific treatment of the heat balance allows us to analyse which are the 

prevalent factors for heat balance in case of the die-casting process. 

Real temperature monitoring and process simulation in working conditions are today the most 

used methods in order to understand the influence of every single factor. A sensitivity analysis, 

whether virtual or real, represents the best approach to define which is the contribution of every 

single factor within a well-defined production cycle or to a specific die-casting component.  
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THE HEAT BALANCE OF A HIGH PRESSURE DIE-CASTING MOULD 
 

In case of die-casting, one of the peculiar features, is the achievement of castings characterized 

by very limited size tolerances (Fig. 1). Such condition is possible thanks to the use of a metallic 

mould and to the fact that, during solidification (Fig. 2), the metal cannot shrink freely as 

forced, by the applied pressure, to adhere to the die surfaces.  

 

The die plays an important role within the productive process and it is evident that the 

knowledge of the factors contributing to the die heat balance is necessary and useful for a proper 

equipment design.  

 

  
Fig 1. Geometry of a die-casting Fig. 2 Solidification of a die-casting 

 

 

The numerical approach to the energy balance, in case of permanent mould casting more than in 

high pressure die-casting, and the analysis of positive and negative thermal contributions are so 

important to deserve a detailed treatment with the support of the results achieved through 

process simulations. (Fig. 1 and Fig. 2). 

 

The heat input due to the die-casting is absorbed by the mould mass, but its thermal regime does 

not only depend on its volume, but also on other factors, such as the presence of thermal 

regulation channels, coatings application on the surface (lubricants, paints, etc.) and the 

emission towards the external environment. (Fig. 3) 

 

The balance expresses the mould temperature rise (with mass M and specific heat Cp), from the 

starting temperature Ti and the final temperature Tf, as a function of the difference between the 

latent heat and the heat losses, due to cooling channels, to the lubrication of the mould surface 

and to the external environment.  

 

( ) esternaasportcircuitiasportrificaasportnteCaloreLateTiTfCpM ..lub. −−−=−×  

 

The continuative production with a permanent mould aims at minimizing the cycle time that, 

from the thermal point of view, fixes the frequency of the thermal oscillations. 

The production start-up is affected by thermal pulses to each cycle with temperature values that 

tend, in the same points, to rise up to the reaching of a stable and repetitive situation; the 
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thermal regime can be then defined as that state in which the temperature, in a generic point at 

the end of the cycle, coincides with the one at the beginning of the cycle (Fig. 4). 

 

The statement is clearly valid with reference to any instant of the single working cycle, therefore 

the maximum or minimum temperature value will be reached in the intended point always at the 

same time.  

 

In case of die-casting, the maximum value of the mould surface heat is obtained when the 

injected alloy has reached a 70-80% solidification, while the minimum one after the lubrication 

phase (Fig. 4). 

 

From a general estimation, it may be considered that the 80% of the heat is absorbed by the die 

and the thermal regulation circuits, the 15% by the lubricant application and the remaining 5% 

by the external environment. Such percentages vary as a function of the cycle time, that, due to 

the intended high productivity is quite limited; for instance the lubricant contribution, under the 

same conditions, can raise from a 15% up to a 50% if the total cycle time has a 30% reduction.  

 

 

 
Fig. 3 Factors for the die heat balance Fig. 4 The condition of the die thermal regime 

 

The heat that the alloy releases is handed over in three different phases: liquid cooling (from the 

casting temperature to the liquid temperature), the transformation phase from liquid into solid 

(latent heat) and the final cooling from the solid temperature to ambient or ejection temperature. 

A numerical analysis, taking into account 1 Kg of aluminium alloy, makes clear that the main 

contribution is provided by the latent heat ranging at 430 kJ/kg, being about the 50% of the total 

heat (Fig. 5).  

 

 
Fig 5. Released heat from one Kg aluminium alloy 
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The average working temperature of the die refers to the end of the cycle, with values ranging 

from 200 to 300 °C, and normally guarantees a good cavity filling and a quick and uniform 

cooling of the casting.   

During the die pre-heating phase or when starting up a new production (Fig. 7), besides the 

production rejects, considerable thermal shocks may take place, leading also to surface cracks, 

which then grow due to the thermal fatigue in the following production phases. 

 

The die heat balance is not so easy to be predicted and therefore the theoretical design is 

initially based on the search for the best compromise, taking into account the effects of a too 

high or too low mould temperature. In the first case the presence of high pressure deformations 

and soldering can cause a difficult ejection, the surface layer of the lubricant-separator tends to a 

quick lowering, when the mould tear and wear increases; the cycle time draws out and the size 

instability of the component may show considerable shrinkage porosities.    

 

In the second case, the die lowering is due to high thermal gradients with the subsequent 

difficult ejection of the casting, that shrinks around core pins and lug bolts. The risk for cold 

shuts is much more present and cavity lacking fillings may take place. By the end of the filling 

routine, the casting temperatures aren’t generally uniform in relation to the subsequent casting 

deformation after the ejection. 

 

The natural loss towards the external environment is due to the following three phenomena: 

 

• Loss for convection outwards which principally depends on the die area and on the 

temperature gradient between die and environment. 

• Loss for radiation outwards which principally depends on the material emissivity and on the 

die temperature, as well as on how broad the die surface is. 

• Loss for conduction towards the coldest layers of the machine the die is in contact with. 

 

The following figure (Fig. 6) shows the temperature-time curves of some virtual thermocouples 

located at different depths with relation to the mould surface: the thermocouple n.1 reaches 

“under the skin” high values in a short time, follows the casting cooling and is influenced by the 

drastic heat loss of the lubrication phase; the disturbances have a lower effect at a depth of 5, 10 

and 15 mm (thermocouples 2, 3 and 4 respectively) because of the die thermal inertia. 

 

  
Fig. 6 The evolution of the temperature acquired 

by thermocouples located closet o the die surface 

Fig. 7 Effect due to production interruption 

 

The application of the lubricant implies a considerable thermal loss due to the difference in 

temperature between the active part of the die and the lubricant working fluid. 

From the thermal point of view, several are the factors determining the flux of lost heat during 

spraying with the lubricant: vector temperature, mould temperature, air pressure, medium 
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pressure, distance from the surface, angle of impact with the surface, application time, 

concentration and chemical composition of the lubricant.  

 

Practically, once the system and the kind of lubricant have been chosen, the main remaining 

variables are the time and the angle of impact; while the first can be managed by the operator, 

the suitable angle of impact (90°) is not easy to be achieved, in case of complex geometries 

formed by very deep cores and die “holes”.  

Different local temperatures on the die surface suggest a diversified application to better control, 

if using the most common water lubricant, the four cooling conditions, experimentally identified 

as functions of higher and higher thermal gradients between the die and the lubricant:    

 

• For ∆T low values between die and liquid, the lubricant drops adhering to the die 

surfaces generate a limited heat loss for convection.  

• If ∆T increases, the working vector generates a higher thermal loss, when it hits the die 

hot surface and tends to evaporate.  

• The evaporation phase becomes more and more important if the ∆T is even higher; the 

convection is reduced implying a reduction of lost heat. 

• When the temperature ratio between the mould and the lubricant is considerable, the 

working vector instantly evaporate and the heat loss increases. 

 

The four above-mentioned situations analyse this phenomenon only from a thermal point of 

view, neglecting the thermo-chemical elements influencing the stratification of the protective 

deposit and therefore the lubricant and release properties of the application.  

 

The following figure (fig. 8) shows the temperature distribution on a high pressure die-casting 

mould, before and after the release agent application: the thermal effect is not visible in depth 

and it is different according to the initial surface temperature. 

 

   

  

Fig. 8 Surface temperature before die 

lubrication 

Fig. 9 Surface temperature after die 

lubrication 

 

 

The thermal effect of the following blow phase is similar: the air that flows in pressure towards 

the die surfaces generates a softer heat loss than the lubrication. 

It is therefore clear that the mould heat balance strongly depends on the surface lubrication 

phase and the strong heat loss is the main reason for surface cracks.  
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Through a little variation of the lubrication time (for instance, from 4 to 1 second, on average), 

as shown in the following figures (Fig. 10 and Fig. 11), it is possible to change the average 

working temperature of the die but, above all, the thermal oscillation, which could be critical in 

view of the fatigue strength is reduced (a 50% reduction going from 74 to 38 °C). 

 

  

Fig. 10 Surface thermal drop due to di 

lubrication 

Fig. 11 Surface thermal drop due to die 

lubrication with reduction of time application 

 

 

As previously mentioned, the inner thermal regulation channels (Fig. 12 and Fig. 13) are 

charged with the thermal regulation of the die, making the temperature distribution stable and 

uniform. Water remains the cheapest and more widely used means, when a stronger cooling of 

the casting is required (Fig. 13). 

 

 

  

Fig. 12 Thermal regulation 

system scheme 

Fig. 13 Thermal effect of a water circuit and of a oil one 

 

 

 

 

 
 

 

 



 7 / 7 

CONCLUSIONS 
 

The list of the factors contributing to the die heat balance is well known, starting from the 

principal heat source (the cooling metal) to the main means for heat loss (mould and lubricant 

application).   

It is not so easy to assign them a general contribution percentage to the heat balance, to be valid 

for any casting and any cycle time. The product-process-mould combination needs to be 

accurately analysed by the designer and requires an effective control in the production phase. 

 

The monitoring of the working temperature of the steel permanent mould is an essential task to 

be performed for a suitable use of the tools and for their maintenance. Thermocameras or 

infrared sensors are practical and user-friendly tools in foundry. In order to obtain an ongoing 

and methodical detection, some fixed thermocouples may be placed in the most important points 

of the die and it would be possible to control the cooling channels switching on and off 

automatically, as well as the single phases of the productive process (filling, solidification, 

opening, ejection) establishing the limits that guarantee the casting quality. 

 

In the design phase, when the tools haven’t been physically produced yet, the process simulation 

by using the MAGMASOFT software [3-5],  provides a useful help to analyse the heat balance. 

The numerical approach is already well-founded and allows to search for new solutions or to 

test new materials and methods for the release agent deposition/coating. 
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