
DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38100 Povo — Trento (Italy), Via Sommarive 14
http://disi.unitn.it/

BRAIN-COMPUTER EVOLUTIONARY MULTI-OBJECTIVE
OPTIMIZATION (BC-EMO): A GENETIC ALGORITHM
ADAPTING TO THE DECISION MAKER

Roberto Battiti and Andrea Passerini

August 2009

Technical Report # DISI-09-060

Brain-Computer Evolutionary Multi-Objective

Optimization (BC-EMO): a genetic algorithm

adapting to the decision maker

Roberto Battiti and Andrea Passerini
Dipartimento di Ingegneria e Scienza dell’Informazione,

Università di Trento, Via Sommarive, 14 - 38050 Povo (Trento) - Italy

{battiti,passerini}@disi.unitn.it

August 2009

Abstract

The centrality of the decision maker (DM) is widely recognized in
the Multiple Criteria Decision Making community. This translates into
emphasis on seamless human-computer interaction, and adaptation of the
solution technique to the knowledge which is progressively acquired from
the DM.

This paper adopts the methodology of Reactive Optimization (RO) for
evolutionary interactive multi-objective optimization. RO follows to the
paradigm of “learning while optimizing”, through the use of online ma-
chine learning techniques as an integral part of a self-tuning optimization
scheme.

User judgments of couples of solutions are used to build robust incre-
mental models of the user utility function, with the objective to reduce
the cognitive burden required from the DM to identify a satisficing so-
lution. The technique of support vector ranking is used together with a
k-fold cross-validation procedure to select the best kernel for the problem
at hand, during the utility function training procedure. Experimental
results are presented for a series of benchmark problems.

1 Introduction

Many evolutionary algorithms have been developed in the last years, start-
ing at least from the eighties [1], to solve multiobjective optimization problem
(MOOPs). A MOOP can be stated as:

maximize f(x) = {f1(x), . . . , fm(x)} (1)
subject to x ∈ Ω (2)

where x ∈ IRn is a vector of n decision variables; Ω ⊂ IRn is the feasible region
and is typically specified as a set of constraints on the decision variables; f :
Ω→ IRm is made of m objective functions which need to be jointly maximized.

1

Objective vectors are images of decision vectors and can be written as z =
f(x) = {f1(x), . . . , fm(x)}. Problem 1 is ill-posed whenever objective functions
are conflicting, a situation which typically occurs in real-world applications. In
these cases, an objective vector is considered optimal if none of its components
can be improved without worsening at least one of the others. An objective
vector z is said to dominate z′, denoted as z � z′, if zk ≥ z′k for all k and there
exists at least one h such that zh > z′h. A point x̂ is Pareto optimal if there is no
other x ∈ Ω such that f(x) dominates f(x̂). The set of Pareto optimal points
is called Pareto set (PS). The corresponding set of Pareto optimal objective
vectors is called Pareto front (PF).

Evolutionary algorithms (EAs) work with a population of tentative solu-
tions and they are therefore ideally suited to search for a set of Pareto-optimal
solutions to be presented to the decision maker (DM). In this paradigm, evo-
lutionary multiobjective optimization algorithms (EMOAs) aim at building a
representative set of points near the Pareto front.

Some of the most successful EMOAs [2, 3, 4] rely on Pareto dominance clas-
sification as a fitness measure to guide selection of the new population. To
adequately cover the PF, two important criteria are the proximity of the points
to the PF and the diversity and spread of solutions, aiming at a uniform dis-
tribution on the PF. The work in [5] highlights a tradeoff between proximity
and diversity that cannot be solved a priori without considering the specific
demands of the decision maker. Furthermore, the definition of “uniform distri-
bution” hides the fact that uniformity depends on the metric, on the scaling of
objective values, in other words on the user preferences which cannot be fixed
a priori [6].

The work [7] indicates that resorting to Pareto dominance classification to
assign fitness becomes ineffective for increasing number of objectives and pro-
poses a refined preference ordering based on the notion of order of efficiency [8].
The reason is that the proportion of Pareto-optimal elements in a set grows
very rapidly with the dimension m, so that most solutions become in practice
undistinguishable unless other criteria are added.

The curse of dimensionality also strikes when the decision maker is con-
sidered. The assumption that a typical DM likes the idea of being presented
with hundreds or thousands of representative solutions on a multi-dimensional
Pareto front is very far from reality. Although creating this representative set is
appealing from a mathematical and research-oriented point of view, the reality
of applied decision making must consider the following priorities.

• Bounded rationality and information bottleneck. The typical DM (being a
typical human person) cannot deal with more than a very limited number
of information items at a time. After Simon’s seminal papers in the fifties,
aspects of bounded rationality permeate theories of choice, see for example
the review in [9]. Human beings develop satisficing decision procedures,
which are sensible given their constraints regarding human memory and
information processing capabilities.

• Learning on the job. Most DMs cannot or do not like to explicitly formu-
late their objectives at the beginning. This is already recognized in the
MOO formulation, where a combination of the individual objectives into
a single preference function is not executed. Knowledge elicitation stops

2

at the building blocks given by the individual zk’s. In addition, the tradi-
tional MOO community recognizes the need for interactive MOO, decision
processes where learning by the DM and computer-supported solution pro-
cesses work in coordination. According to [10], through interactive MOO
the DM is building a conviction of what is possible and confronting this
knowledge with her preferences that also evolve.

• Simple questions, qualitative judgments. The number of questions that
have to be asked to the DM before a satisfactory solution is identified
is a crucial performance indicator of interactive methods. This demands
for selecting appropriate questions, for extracting as much information as
possible from the answers, for building approximated models which may
reduce the need to bother the DM. The complexity of the questions is also
an issue. All DMs can be assumed to produce qualitative judgments, like
“I prefer solution A to solution B.” Asking for quantitative evaluations
of the kind “By how much do you prefer A over B?” is in some cases
inappropriate, artificial, or even impossible. Asking for explanations of
choices is even more difficult: most DM are typically more confident in
judging and comparing than in explaining.

• Uncertainty and inconsistency. The assumption that a fixed, deterministic
and error-free preference structure of the DM is available is often not
realistic. Imprecisions, contradictions, changes of judgment over time are
the characteristics of most human decision processes.

The above priorities demand a shift of paradigm, from building a set of
solutions which is representative of the true PF, to the interactive construction
of a sequence of solutions where the DM is a crucial learning component in the
optimization loop, a component characterized by limited rationality and scarce
question-answering capabilities.

The motivation for our long-term investigation is in the systematic use of
machine learning techniques for online learning schemes in optimization pro-
cesses. In particular, the objective of Reactive Optimization (RO) [11] is to
design problem solving schemes with an internal online feedback loop for the
self-tuning of critical parameters. Internal parameters and algorithmic choices
are adapted to the particular instance being solved.

In the context considered in this work, the objective of the learning process
is the approximated construction of a utility function U to be optimized by
the DM, who is also the source of learning signals. As in the traditional MOO
context, the function to be optimized is not completely unknown like in a black-
box context (see for example the response surface methodology and the related
kriging and design of experiments approaches [12]), but is to be modeled after
starting from the building blocks zk characterizing positive features of a generic
solution. Preference models are built from the DM input by using the support
vector ranking method. The functional form of the preference function is not
fixed a priori, like it is in the weighted sum or Tchebycheff approaches (see for
example [13] for a clear explanation of scalarization methods) but is itself learnt
during the process in a reactive fashion.

The rest of the work is organized as follows. In Section 2 we discuss the
problem of modeling user preferences for interactive MOO and introduce our
learning approach. Section 3 describes the support vector ranking method for

3

learning user preferences. The overall algorithm is detailed in Section 4 and
related works are discussed in Section 5. An extensive experimental evaluation
is reported in Section 6. Finally in Section 7 we draw some conclusions and
propose possible directions for future research.

2 Brain-Computer Optimization: Learning user
preferences in EMO approaches

Solving a MOO problem typically means providing a human decision maker with
the solution she believes optimal according to a certain utility criterion allowing
her to choose among competing Pareto optimal alternatives. Such utility cri-
terion can of course be partially inconsistent, difficult to formalize and subject
to revision according to the solutions provided by the optimization algorithm.
Approaches to MOO can be roughly divided into the two broad categories of
non-interactive and interactive ones [14]. The former can be further divided
into a priori approaches, where the decision maker is required to formulate her
preferences in advance, and a posteriori approaches, where the algorithm recov-
ers a representative subset of the Pareto optimal set from which the user selects
the preferred solution. A priori methods have the drawback of requiring the
user to pre-specify her preferences, for instance as a set of weights on different
objectives, which is typically rather hard for a human decision maker. A poste-
riori methods, on the other hand, imply a laborious selection among a large set
of candidate solutions. Interactive approaches try to overcome some of these
difficulties by keeping the user in the loop of the optimization process and pro-
gressively focusing on the most relevant areas of the Pareto front guided by the
user feedback. The focus on fusing the capabilities of evolutionary computation
(EC) with human evaluations reaches an extreme point with the interactive EC
proposed in [15], where the fitness function is replaced by a human user. Our
investigation follows an intermediate point, where knowledge of the objectives
zk is assumed a priori, and the DM is queried in order to build an explicit and
robust nonlinear model of her preferences, to be used as an integral component
of the problem-solving process.

Formalizing user preferences into a mathematical model is a non-trivial task.
A model should be able to capture the qualitative notion of preference and rep-
resent it as a quantitative function, while retaining Pareto optimality proper-
ties. The simplest possible model is a linear value function, in which (positive)
weights can be conceived as encoding the relative importance of different objec-
tives:

U(z) =
m∑
k=1

wkzk

However, its appropriateness is rather questionable [16]. Indeed, whenever
objective functions correlate with each other, the most intuitive approach of giv-
ing highest weight to the most important criterion can lead to completely unsat-
isfactory solutions [17, 18]. Furthermore, assuming that satisfaction increases
linearly with objective function decrease is not straightforward. Relying on the
concept of decreasing limiting performance from mathematical economics, Podi-
novskii [19] argues that improvements on poorly satisfied objectives should be

4

considered more relevant than equally sized improvements on better satisfied
ones. Most approaches generalize the linear utility function to a weighted-Lp
metric of the following form:

U(z) = −

(
m∑
k=1

wk|z∗k − zk|p
)1/p

(3)

where z∗ is a reference ideal objective vector obtained by separately maximizing
each objective function subject to the feasible region, i.e. z∗k = maxx∈Ω fk(x).
A popular choice in this setting is that of the Tchebycheff (or L∞) metric,
leading to the following augmented weighted Tchebycheff program (AWTP):

min α+ ρ

m∑
k=1

(z∗∗k − zk) (4)

subject to:
wk(z∗∗k − zk) ≤ α

w ∈ IRm, wk ≥ 0,
m∑
k=1

wk = 1

fk(x) = zk, x ∈ Ω
k = 1, . . . ,m

where z∗∗ is the utopian objective vector obtained adding a small positive
scalar to the ideal vector z∗. Let’s comment: if ρ is set to zero, minimizing
α amounts to minimizing the maximum weighted distance wk(z∗∗k − zk) be-
tween each individual objective and the utopian target. The augmentation by
the term ρ

∑m
k=1(z∗∗k − zk), with ρ being a small positive scalar, generates prop-

erly Pareto optimal solutions, a more robust subset of Pareto points (a finite
improvement in one objective is possible only at the expense of a reasonable
worsening in other objectives).

The interactive weighted Tchebycheff procedure (IWTP) [20] consists of solv-
ing multiple AWTP, one for each choice of weight vectors w, in order to present
the DM with a small set of well-spaced, representative sample solutions. The
DM is asked to select the most preferred among the proposed solutions, a new
set of weights is produced which is consistent with the DM choice and a new set
of solutions is generated, repeating the procedure until the DM is satisfied with
the results. A more recent paper using a Tchebycheff utility function [21] focuses
on minimizing the number of questions asked to the DM. Pairwise comparisons
of solutions are used to generate constraints on the Tchebycheff weights and to
identify multiple disjoint regions in weight space. Representative weights from
the different regions are then generated to search for new challenger solutions
to present to the DM.

Given the critique for linear weighting schemes, related also to the nonlinear
preference of ”compromise” solutions which is characteristic of many human
decision activities, we explicitly consider nonlinear dependencies in this work.
For instance, a generic polynomial utility function such as:

5

U(z) =
m∑
i=1

wizi +
m∑
i=1

∑
j≥i

wijzizj

+
m∑
i=1

∑
j≥i

∑
h≥j

wijhzizjzh + · · ·

+
m∑
i=1

· · ·
∑

k≥m−1

wi···kmzi · · · zkzm (5)

would account for strong non-linear relations between objectives. However,
we do not specify a priori a certain form for the utility function, but rather
employ a Reactive Optimization scheme to determine the appropriate model
to be used while the algorithm runs on a specific instance. The selection of a
linear versus nonlinear model as well as the type of nonlinear model is decided
in an automated way, depending on the user interaction and on the preference
for simple models explaining the data which is the bread and butter of modern
machine learning techniques. Our solution aims at:

1) being able to learn an arbitrary utility function from examples of prefer-
ence information interactively provided by the DM

2) requiring DM intervention only through holistic judgments (comparisons
of complete solutions instead of specification of detailed parameters like weights
of trade-offs), by ranking sets of competing instances or specifying pairwise
preferences between candidate solutions

3) naturally accounting for incomplete, imprecise and contradictory feedback
from the DM

4) directly employing the learned utility function in order to guide the search
for refined solutions

We rely on an adaptation of the well-known support vector machines [22]
classification algorithm to preference learning in order to learn the utility func-
tion from user preference information. An EMO algorithm is run alternating
a search phase, guided by a fitness measure based on the learned utility func-
tion, and a refinement phase where the DM is queried for feedback on candidate
solutions and the utility function is updated according to such feedback.

3 Learning to rank

Given a sequence of competing instances (z1, . . . , z`) ∈ Z` and an order relation
� such that zi � zj if zi should be preferred to zj , a ranking (y1, . . . , y`) of the
` instances can be specified as a permutation of the first ` natural numbers such
that yi < yj if zi � zj . Learning to rank consists of learning a ranking function f
from a datasets D = {(z(i)

1 , . . . , z(i)
`i

), (y(i)
1 , . . . , y

(i)
`i

)}si=1, of sequences with their
desired rankings. Different approaches have been proposed in the literature to
deal with ranking tasks (see [23] for a review). A common approach consists of
learning a utility function U : Z → IR measuring the importance of the instance,
with the aim that U(zi) > U(zj) ⇐⇒ zi � zj . In the following we will focus on
an effective solution for learning a utility function based on suitable adaptations
of the support vector machine algorithm [24, 25, 26]. The solution will naturally

6

account for situations in which only partial information on pairwise ordering is
available for training. We will start with a brief discussion on support vector
machines for classification [22] and extend the formulation to handle ranking
tasks.

3.1 Support vector classification

Let D = (zi, yi)si=1 be a training set of binary labelled examples, yi = 1 or
yi = −1. Standard Support Vector Machines [22] for classification learn a
decision function h(z) = sign (〈w, z〉+ b) trading-off fitting of the training data
with large margin separation of classes, by solving the following optimization
problem:

min
w∈Z,b∈IR, ξ∈IRs

1
2
||w||2 + C

s∑
i=1

ξi (6)

subject to:
yi(〈w, zi〉+ b) ≥ 1− ξi
ξi ≥ 0
i = 1, . . . , s

MARGIN = 2
||w||

margin errors
(ξi > 0)

Figure 1: Classification problem solved by support vector machines. The solid
line represents the separating hyperplane, while dotted lines are hyperplanes
with confidence margin equal to one. Black points are unbound SVs, grey points
are bound SVs and extra borders indicate bound SVs which are also training
errors. All other points do not contribute to function to be minimized. Dotted
lines indicate the margin error ξi for bound SVs.

The first term in the minimization accounts for a large margin separation,
with margin given by 2/||w||, while the second accounts for penalties ξi for ex-
amples i not separated with the required margin (see Figure 1 for an example).
The tradeoff factor C has to be adapted to the data, for example a noisy mea-
surement process for z implies that margin errors ξi be given a smaller weight
(a smaller C value).

Whenever non-linear separation surfaces are needed in order to obtain a sat-
isfactory separation, examples are projected into a suitable higher dimensional

7

feature space via a mapping function Φ (see Figure 2) and the same optimiza-
tion problem is solved, simply replacing zi with Φ(zi). In the dual formulation
of the optimization problem, projected examples always occur within dot prod-
ucts 〈Φ(zi),Φ(zj)〉. These can be replaced by an equivalent kernel function
k(zi, zj) = 〈Φ(zi),Φ(zj)〉 on input examples which efficiently computes the dot
product without explicitly doing the projection, which can even be infinite di-
mensional. The resulting decision function can be represented as a linear combi-
nation of kernel functions on support vectors: h(z) = sign

∑
zi∈SV αiyiK(zi, z).

Kernel functions can be seen as similarity measures generalizing dot products to
arbitrary domains and allowing to decouple learning algorithms from example
representation. The above decision function can be rationalized as follows: the
final decision is obtained from a linearly weighted combination of the outputs yi
for selected training examples, the weights being influenced by the similarity be-
tween the current example z and the training example zi. Universal kernels [27]
are powerful classes of kernel functions which can uniformly approximate any
arbitrary continuous target function. A popular class of universal kernels is the
Gaussian kernel, which is written as:

K(z, z′) = exp(−γ||z− z′||2) (7)

where γ is a positive constant. Kernel functions for structured data such as
string, trees and graphs have been developed in the literature. In some cases
the “kernel trick” transforms the computational complexity in a radical way,
from practically unaffordable scalar products to efficient computations. Details
on kernel machines can be found in several textbooks, e.g., see [28].

Φ

Figure 2: Higher dimensional feature space projection via mapping function Φ
for non-linearly separable problem.

3.2 Support vector ranking

The SVM formulation can be easily adapted to learning the utility function
for ranking: U(z) = 〈w,Φ(z)〉. The constant term b can be omitted because
only differences of U values matter for the ranking. Given a ranking dataset
D = {(z(i)

1 , . . . , z(i)
`i

), (y(i)
1 , . . . , y

(i)
`i

)}si=1, it suffices to impose constraints on the

8

correct pairwise ordering of instances within a sequence: U(z(i)
h) > U(z(i)

k) ⇐⇒
y

(i)
h < y

(i)
k . The resulting minimization problem can be written as:

min
w∈Z, ξ∈IR∗

1
2
||w||2 + C

s∑
i=1

∑
hi,ki

ξi,hi,ki
(8)

subject to:

〈w,Φ(z(i)
hi

)〉 − 〈w,Φ(z(i)
ki

)〉 ≥ 1− ξi,hi,ki

ξi,hi,ki ≥ 0

hi, ki : y(i)
hi
< y

(i)
ki

i = 1, . . . , s

Note that the formulation allows to naturally account for ties and partial
rankings, as constraints are only included whenever two examples should be
ranked differently.

The problem is equivalent to the standard SVM formulation in (6) if we
consider examples as pairs δΦ(z(i)

hi
, z(i)
ki

) = Φ(z(i)
hi

) − Φ(z(i)
ki

), all pairs labels
as positive and no bias term as it cancels out in the difference. In the dual
formulation, the utility function thus becomes a linear combination of kernel
functions on example pairs:

U(z) =
∑

(z
(i)
hi
,z

(i)
ki

)∈SV

αi,hi,ki

(
K(z(i)

hi
, z)−K(z(i)

ki
, z)
)

By noting that each example z(i)
j can appear multiple times in the summation

(depending on the number of constraints it is involved in), we can rewrite the
utility function more compactly as a linear combination of kernel functions on
examples:

U(z) =
∑

z
(i)
j
∈SV ∗

αi,jK(z(i)
j , z)

where:

αi,j =
∑

(z
(i)
hi
,z

(i)
ki

)∈SV

: z
(i)
j

=z
(i)
hi

αi,hi,ki
−

∑
(z

(i)
hi
,z

(i)
ki

)∈SV

: z
(i)
j

=z
(i)
ki

αi,hi,ki

therefore reducing the computational cost of calculating the utility function.

4 The BC-EMO algorithm

Support vector ranking has a number of desirable properties making it a suitable
candidate for learning user preferences. First, it accepts supervision in terms
of pairwise preferences, a much more affordable request for a human decision
maker than a quantitative quality score. Second, it is well grounded on learning
theory: its trading off data fitting and complexity of the learned hypothesis
allows to effectively deal with noisy observations, a situation which is quite

9

likely to occur when receiving feedback from a human user with only partial
knowledge on the domain at hand. Third, the ability to implicitly project
data into a higher dimensional feature space via the kernel trick provides the
needed flexibility in order to best approximate the underlying preference model
of the specific user. The polynomial value function in eq. (5), for instance, can
be easily implemented by an m-th degree inhomogeneous polynomial kernel:
K(z, z′) = (1 + 〈z, z′〉)m.

The problem boils down to learning the utility function from examples of user
preferences, and employing the learned function to guide the search for the glob-
ally optimal solution. The most natural approach would be to turn the MOO
problem into a single objective optimization problem by directly optimizing the
learned utility function. However, this requires the learned function to retain
Pareto optimality, which is guaranteed if the function has non-negative weights.
This non-negativity constraint cannot be easily incorporated into the general
SVM formulation while retaining the advantages of the kernel trick. A simple
and effective alternative can be conceived when the preference function is em-
ployed in conjunction with evolutionary optimization algorithms. EMOAs [2, 3]
typically rely on Pareto dominance classification as a fitness measure to guide
selection of the new population. Previous works [7] already highlighted that
such a choice can be rather suboptimal for increasing number of objectives
and proposed a refined preference ordering based on the notion of order of effi-
ciency [8]. Here we exploit the same idea replacing order of efficiency with value
of the learned utility function. An unordered population combining parents and
offsprings of the current generation is sorted in steps by:

1) collecting the subset of non-dominated individuals in the population
2) sorting them according to the learned utility function
3) appending to the sorted set the result of repeating the procedure on the

remaining dominated individuals.
Algorithm 1 describes this ranking procedure which clearly retains Pareto

optimality. The procedure is terminated as soon as the desired set of s individ-
uals is obtained. Any EMOA can be equipped with such a preference ranking
procedure in order to guide the selection of the next population. Note that the
combined ranking according to dominance and utility function preference is em-
ployed whenever comparisons between candidate individuals have to be made in
creating the next generation. Algorithm 2 describes the procedure of a generic
training iteration, which combines training or refinement of the utility function
and preference ranking according to the learned function. Training consists of:

1) selecting a set of exa training individuals as the best ones according to
the current criterion, where the utility function is replaced by random selection
(within non-dominated individuals) at the first training iteration;

2) collecting pairwise preferences for these individuals from the decision
maker and adding them to the set of training instances (empty at the first
training iteration);

3) performing a kernel selection phase by a k-fold cross validation procedure
in order to choose the best kernel for the problem at hand;

4) training the utility function on the overall set of examples with the chosen
kernel.

The learned utility function is then used to sort the remaining set of candi-
date individuals.

10

Algorithm 1 Preference ordering based on utility function
1: procedure PrefOrder(Pi, U , s)

Input:
Pi unordered population
U utility function
s size of output population
Output:
Po ordered population

2: identify Pareto non-dominated individuals P ∗i in Pi
3: build Po ordering individuals in P ∗i according to U
4: if len(Po) ≥ s then
5: return first s elements of Po
6: else
7: collect Pareto dominated individuals P di ← Pi \ P ∗i
8: if P di 6= ∅ then
9: P do ←PrefOrder(P di , U , s− len(Po))

10: concatenate the two lists Po ← Po + P do
11: end if
12: return Po
13: end if
14: end procedure

The overall procedure, which we name BC-EMO as an acronym for Brain-
Computer Evolutionary Multi-Objective Optimization, is described in Algorithm 3
for a generic EMO algorithm. The algorithm parameters are: the number of
allowed training iterations (maxit), the number of training individuals for iter-
ation (exa), the number of generations before the first training iteration (gen1)
and between two successive training iterations (geni), a minimal performance
requirement for prematurely stopping the training phase (thres), the size of
population for the EMO algorithm (s). Additional parameters can be required
depending on the specific EMO algorithm employed (see the experimental sec-
tion). The algorithm alternates a training phase where the current utility func-
tion is updated according to the DM feedback, and a search phase guided by the
preference ordering procedure. When either the maximum number of training
iterations or the desired accuracy level are reached, an additional search phase
is conducted producing the final ordered population.

Our BC-EMO algorithm is a generic formulation which can be implemented
on top of any EMO algorithm. In this work we employed the NSGA-II [40]
EMOA1. NSGA-II runs in its original formulation, including the crowded-comparison
operator for guaranteeing a sufficiently diversified population, for gen1 genera-
tions. Our preference model is then trained according to the DM feedback and
the modified preference ordering procedure in Alg. 1 replaces both the ordering
of the new population and the selection criterion of the binary tournament se-
lection operator. The crowding distance mechanism is switched off at this point
as we are interested in directing the generation of new individuals in the most

1available at http://www.iitk.ac.in/kangal/codes.shtml

11

Algorithm 2 Training procedure at a generic EMO iteration
1: procedure Train(Pi, Ui, s, exa)

Input:
Pi unordered population
Ui current version of the utility function
s size of output population
exa number of training individuals for iteration
Output:
Po ordered population
Uo refined version of the utility function
reso estimated performance of refined utility function

2: Ptr ← PrefOrder(Pi,Ui,exa)
3: obtain pairwise preferences for Ptr from the DM
4: sort Ptr according to user preferences
5: add Ptr to the current list of training instances
6: Choose best kernel K by k-fold cross validation
7: Uo ← function trained on full training set with K
8: reso ← k-fold cv estimate of function performance
9: P ∗o ← PrefOrder(Pi \ Ptr, Uo, s− len(Ptr))

10: Po ← Ptr + P ∗o
11: return Po, Uo, reso
12: end procedure

interesting regions according to the DM preferences. The preference learning
module is based on the support vector machine package SVMlight2.

5 Related Work

Interactive multiobjective optimization has been an active research area in the
last decades. In the field of EMO [4], a survey of preference-handling methods
is presented in [29], and a recent survey of interactive EMO algorithms is given
in [30]. The objective of this section is not to give an exhaustive review of the
different papers but to compare our approach with some significant and related
approaches dealing with modeling user preferences and interacting with the DM.

Artificial neural networks have been used in a number of works [31, 32, 33]
to learn user preferences in an interactive fashion. In the interactive FFANN
procedure [31], a feed-forward artificial neural network is trained to approxi-
mate the user utility function using a sample of user evaluated non-dominated
solutions, and employed as the objective function of a non-linear optimization
problem. However, there is no guarantee that the improved solutions found by
the non-linear optimization problem are non-dominated. FFANN were later [32]
used within an IWTP to replace the diversity selection criterion with a user pref-
erence criterion as predicted by the FFANN. While the resulting procedure is
guaranteed to always produce non-dominated solutions, the role of FFANN is

2available at http://svmlight.joachims.org/

12

Algorithm 3 The BC-EMO algorithm
1: procedure BC-EMO(maxit, exa, gen1, geni, thres, s)

Input:
maxit maximum number of allowed training iterations
exa number of training individuals for iteration
gen1 generations before first training iteration
geni generations between two training iterations
thres performance requirement to stop training
s size of population
Output:
P final ordered population

2: res← 0, it← 0, U ← Rand
3: run the plain EMO for gen1 generations
4: collect last population P
5: while it ≤ maxit ∧ res < thres do
6: P,U, res← Train(P , U , s, exa)
7: run the EMO for geni generations
8: guided by PrefOrder with U
9: collect last population P

10: end while
11: run the EMO for remaining number of generations
12: guided by PrefOrder with U
13: return the final population P
14: end procedure

limited to halving the set of solutions to be presented to the user at each iter-
ation, and they cannot directly guide the search procedure. Huang et al [33]
developed an alternative approach where a FFANN is directly employed to pro-
duce refined weight vectors for the next AWTP. The network is trained using
weight vectors as inputs and as outputs the utility of the solution obtained by
the AWTP using the corresponding weight vector. An optimization problem is
then solved in order to determine the set of weights maximizing the output of
the trained network, and the obtained weights are used in the next iteration of
the IWTP.

While retaining the guarantee to produce non-dominated solutions, our ap-
proach has two main advantages. First, the IWTP based methods assume to
be able to constraint the search to the correct subspace relying on a linear set
of weights, one for each objective; on the other hand, our approach directly
employs the learned utility function to guide the search and can be applied
to highly non-linear combinations of objectives such as those in eq. (5). By
automatically tuning the kernel to the problem at hand it is possible to effec-
tively approximate utility functions of varying complexity as will be shown in the
experimental evaluation. Second, our method can be trained with pairwise pref-
erence supervision as opposed to quantitative scores. As previous approaches
pointed out [31, 32], pairwise preferences can be converted into scores following
the method of the Analytical Hierarchical Process (AHP) [34]: a reciprocal com-

13

parison matrix is constructed from the pairwise comparisons and the normalized
principal eigenvector of the matrix is computed. Each component of the nor-
malized eigenvector, which is also named priority vector in this context, can be
viewed as the score of the corresponding solution and used as the desired target.
However, while the procedure perfectly fits the need to order a set of instances
according to their pairwise comparisons, it is not straightforward that a function
trained to fit such scores on a certain training set will correctly generalize to
unseen instances. The function is required to match scores which depend on the
training set generating the matrix, while the ranking constraints in problem (8)
simply require the learned function to correctly sort the examples.

A number of approaches exist combining interactive EMO with pairwise
preference information from the DM. Quan et al [35] developed an approach
based on the notion of imprecise value function [36]. Pairwise preferences are
translated into a set of constraints on the weights of a linear combination of nor-
malized objectives, which determines a constrained subspace W . Two arbitrary
solutions can be compared by solving two linear programming problems, min-
imizing

∑
k wk [vk(zk)− vk(z′k)] and its inverse, where vk() is a normalization

function. If either of the two problems has a positive minimum, preference be-
tween the two solutions can be uniquely determined, and in turn used to assign
fitness to the individuals. Figueira et al. [37] also developed methods relying on
the set of all additive utility functions consistent with user preferences:

U(z) =
m∑
k=1

uk(zk)

where single-objective functions uk() are general non-decreasing functions. Such
utility functions are not used to guide the search of the evolutionary algorithm,
but rather to recover desired solutions from the whole Pareto front returned
by the search. Necessary (resp. possible) pairwise rankings are produced for
pairs of solutions z and z′ such that U(z) ≥ U(z′) for all (resp. at least one
of) the utility functions consistent with user preferences. These rankings are
employed to generate a new sample of reference solutions together to their user
preferences by interacting with the DM, and the process is repeated until the
DM is satisfied with the obtained solutions. The method also accounts for
intensity of preference, both global and at the level of single objectives. Phelps
and Köksalan [38] employ the weighted Lp utility function in eq. (3) trained
from pairwise preferences according to the middlemost weights technique [39]:

max ε (9)
subject to:

m∑
k=1

wk = 1, wk ≥ ε, ∀k = 1, . . . ,m

m∑
k=1

wk(z∗k − zi,k)t ≤
m∑
k=1

wk(z∗k − zj,k)t − ε

∀zi � zj

where ε is a preference margin and zi,k indicates the kth component of objective
vector zi. Constraints are iteratively removed in chronological order in case

14

of infeasibility. The method shares a number of similarities with our approach:
the use of pairwise similarities as constraints in learning the utility function, the
maximization of a preference margin and the use of the learned utility function
as a fitness measure for the evolutionary algorithm. All these methods have
the advantage of directly learning a function which retains Pareto optimality,
with the drawback of constraining in different ways the set of allowed utility
functions. On the other hand, our method aims at exploiting the ability of
kernel machines to learn arbitrary functions, together with their noise robust-
ness implied by the trade-off between data fitting and complexity of the learned
hypothesis, which naturally accounts for imprecise and contradictory user pref-
erences. These features closely correspond to real-world situations characterized
by strongly non-linear and DM-dependent utility functions, and by the complex
evolution of a decision process characterized by possible imprecisions and even
partial contradictions.

6 Experimental evaluation

The experimental evaluation is focused on demonstrating the effectiveness of the
BC-EMO algorithm in approximating user preferences and correctly guiding the
search towards the most preferred solution. Given this focus, we did not attempt
to fine-tune non-critical parameters which were fixed to reasonable values for
all experiments. We chose a population size of 100, 500 generations, probability
of crossover equal to 1 and probability of mutation equal to the inverse of the
number of decision variables. The number of initial generations (gen1) was set
to 200, while the number of generations between two training iterations (geni)
was set to 20. A perfect fit (thres = 1) was required in order to prematurely
stop training. The number of training iterations and examples per iteration
were varied in the experiments as detailed later on in the section. Concerning
the learning algorithm, we fixed the C regularization parameter in eq. (8) to
100. A preliminary analysis showed it to be a reasonable value considering the
cost of the resulting optimization problem and an assumption of no noise in the
DM evaluation. In general, this parameter can be tuned to the problem at hand
as it depends on the kernel employed, the amount of noise and the number of
available training instances.

We selected a set of MOO test problem classes from the popular DTLZ [41]
suite. Each problem class challenges different aspects of MOO and can be
scaled to any number of decision variables and objectives. Table 1 describes
the test problem classes we employed. We retained the original formulation of
the problems as minimization tasks. Note that xm indicates the components of
x from m up to n, according to the notation used in [41]. The choice of this
subset of problems is motivated by the form of their Pareto fronts which allowed
us to design non-linear tasks, as will be detailed later on in the section. For
test problem DTLZ1, we slightly restricted the feasible set for decision variables
with respect to the original formulation (from [0,1] to [0.25,0.75]) in order to
rule out sparse objective vectors (i.e. those with one or few non-zero entries)
from the Pareto front and make the preference learning task more challenging
when increasing the number of objectives.

The first set of experiments is aimed at showing the effectiveness of the
method in early focusing on the correct search area with very few queries to

15

Table 1: Test problem classes employed in the study (from [41])

Name Description

DTLZ1

minx∈Ωf(x)

Ω = {x | 0.25 ≤ xi ≤ 0.75 ∀ i = 1, . . . , n}
f1(x) = 1/2 · (1 + g(xm)) · x1x2 · · · xm−1

f2(x) = 1/2 · (1 + g(xm)) · x1x2 · · · (1− xm−1)

.

.

.

fm(x) = 1/2 · (1 + g(xm))(1− x1)

g(xm) = 100 ·

[
|xm|+

∑
xi∈xm

(xi − 0.5)
2 − cos(20π(xi − 0.5))

]

DTLZ6

minx∈Ωf(x)

Ω = {x | 0 ≤ xi ≤ 1 ∀ i = 1, . . . , n}
f1(x) = x1

.

.

.

fm−1(x) = xm−1

fm(x) = (1 + g(xm))h(f1, f2, . . . , fm−1, g)

g(xm) = 1 +
9

|xm|

∑
xi∈xm

xi

h = m−
m−1∑
i=1

[
fi

1 + g
(1 + sin(3πfi))

]

DTLZ7

minx∈Ωf(x)

Ω = {x | 0 ≤ xi ≤ 1 ∀ i = 1, . . . , n}

fj(x) =
1

b n
m c

bj n
m
c∑

i=b(j−1) n
m
c+1

xi ∀ j = 1, . . . ,m

gj(x) = fm(x) + 4fj(x)− 1 ≥ 0 ∀ j = 1, . . . ,m− 1

gm(x) = 2fm(x) +
m−1
min

i,j=1,i 6=j
[fi(x)− fj(x)]− 1 ≥ 0

the DM, for different test problems and number of objectives in the setting of
linear utility functions. For each problem class, we generated a number of test
instances by varying the number of objectives m from 2 to 10 and by setting
the size of the input decision vector to n = 2m for DTLZ1 and DTLZ6 and
n = 10m, as suggested in [41], for DTLZ7. A total of 27 test instances was thus
considered. Furthermore, we generated linear utility functions by randomly
choosing weights in the range (0,1].

Figure 3 reports a representative set of results for test problems with four,
eight and ten objectives for the three problem classes. The evaluation measure
is the approximation error in percentage with respect to a gold standard final

16

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 4 6 8 10 12 14 16 18 20

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ1 with 4 objectives

#it=1
#it=2
#it=3

 40

 60

 80

 100

 120

 140

 160

 180

 200

 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ1 with 8 objectives

#it=1
#it=2
#it=3

 40

 60

 80

 100

 120

 140

 160

 180

 200

 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ1 with 10 objectives

#it=1
#it=2
#it=3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 4 6 8 10 12 14 16 18 20

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ6 with 4 objectives

#it=1
#it=2
#it=3

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ6 with 8 objectives

#it=1
#it=2
#it=3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ6 with 10 objectives

#it=1
#it=2
#it=3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4 6 8 10 12 14 16 18 20

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ7 with 4 objectives

#it=1
#it=2
#it=3

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ7 with 8 objectives

#it=1
#it=2
#it=3

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20 25 30 35 40 45 50
A

pp
ro

xi
m

at
io

n
er

ro
r

(%
)

Number of examples for iteration

DTLZ7 with 10 objectives

#it=1
#it=2
#it=3

Figure 3: Learning curves for an increasing number of training examples per it-
eration with one (red/solid), two (green/dashed) and three (blue/dotted) train-
ing iterations. Each row reports results for a different problem class: DTLZ1,
DTLZ6 and DTLZ7 respectively. Each column reports results for a different
number of objectives, respectively four, eight and ten. Results are medians over
100 runs. Note that y-axes have different ranges.

solution, the one which is obtained by guiding the algorithm with the true utility
function. Note that the ranking function does not need to correctly estimate the
value of the utility function (and it does not in general), but only to rank good
solutions higher than bad ones in order to correctly guide the search. Each graph
reports three learning curves for an increasing number of training examples per
iteration (exa), with one, two and three iterations (maxit) respectively. Results
are the medians over 100 runs with different random seeds for the search of the
evolutionary algorithm.

Problem classes present quite different characteristics: problems in class
DTLZ1 (first row) were easily solved with just five training examples for up
to four objectives, but were the most difficult to solve for a high number of
objectives. Problems in class DTLZ6 (second row) were the easiest to solve: an
approximation error of less that 1% could be achieved with at most 15 examples
and two training iterations even in the case of ten objectives. Problems in class
DTLZ7 (third row) required more examples than those in DTLZ1 in general
but lead to better approximations with a high number of objectives. If one
considers the number of training iterations, a second iteration was beneficial
in many cases to possibly correct an early suboptimal model, especially with
few training examples. Further training iterations did not provide substantial
advantages.

Note that the DM is only required to compare examples within each training

17

iteration, as we assume that the last generation will represent the most relevant
solutions to her. The learning algorithm (see Section 3.2) combines all these
rankings into a single optimization problem: each training iteration i provides
li ordered examples and a total of s = maxit iterations are available. Given the
algorithm formulation in eq. 8, there is no need for a full ranking of solutions,
but the DM can provide partial information as sets of pairwise comparisons. In
the presented experiments, for simplicity, we assumed a complete ranking.

In the next set of experiments we aimed at testing the ability of the method
to automatically adapt to non-linear user preferences. Our aim is simulating
many real world problems where the most preferred solution is a compromise
among the different objectives. We thus generated test cases making sure that
the utility function projected the most preferred solutions in a central area of
the Pareto front, while retaining the Pareto dominance property. Designing
such utility functions is not trivial. We heuristically generated them for each
test problem by the following process: 1) running the plain NSGA-II algorithm
to reach an approximation of the Pareto front 2) computing a reference point as
the average of the final population 3) computing its distance to all other points
4) randomly generating weights of a second order polynomial 5) computing the
utility value for all points according to the generated polynomial 6) keeping the
polynomial if the rank correlation between the utility values and the distances
to the reference point was higher than 0.4. This should guarantee that solutions
distant from the center are less preferred.

BC-EMO was allowed to choose by internal 3-fold cross validation among
linear and second degree polynomial kernel as well as Gaussian kernel with γ
selected in the set {e−3, e−2, e−1, 1, e1, e2, e3}.

Figure 4 (left) shows an example of Pareto front reached by the plain NSGA-
II algorithm for the DTLZ1 problem with two objectives. Figure 4 (right) shows
the value of Pareto front according to the following polynomial utility function:

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

z2

z1

DTLZ1: Pareto front

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 0.071

 0.072

 0.073

 0.074

 0.075

 0.076

 0.077

 0.078

U(z)

DTLZ1: User preferences for pareto front

z1

z2

U(z)

Figure 4: Problem DTLZ1 with two objectives: (left) Pareto front for a sample
run of plain NSGA-II without user preference; (right) preference values of the
Pareto front according to the non-linear utility function in eq. (10).

0.28 · z2
1 + 0.29 · z2z1 + 0.38 · z2

2 + 0.05 · z1 (10)

Note that the solution which is most preferred by the DM (z1 = 0.249, z2 =
0.251) lies in the middle of the Pareto front. We ran our BC-EMO algorithm on
this test problem and compared to two alternative versions: using a fixed linear
kernel versus automatically tuning the kernel by internal k-fold cross validation.

18

Figure 5 shows the approximation results obtained for an increasing number
of training examples. Results are medians over 10 runs. The linear kernel
is completely unable to improve the performance regardless of the amount of
training examples, stopping at an error of approximately 8%. On the contrary,
tuning the kernel allows to reproduce the user preferences accurately enough to
drive the search towards the desired solution. Let’s note that in the initial point,
corresponding to three examples, a linear kernel is chosen by default (insufficient
data for a model selection by cross validation).

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples

DTLZ1: learning curves

tuned kernel
linear kernel

Figure 5: Approximation error for the non-linear DTLZ1 problem as a function
of the number of training instances: tuned kernel vs linear kernel. Results are
medians over 10 runs.

Problem DTLZ6 presents a highly disconnected Pareto front, as shown in
Figure 6 (left) where plain NSGA-II was again employed to generate the sample.
Figure 6 (right) shows the value of Pareto front according to the following
polynomial utility function:

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

z2

z1

DTLZ6: Pareto front

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

 1.45
 1.5

 1.55
 1.6

 1.65
 1.7

 1.75
 1.8

 1.85
 1.9

U(z)

DTLZ6: User preferences for pareto front

z1

z2

U(z)

Figure 6: Problem DTLZ6 with two objectives: (left) Pareto front for a sample
run of plain NSGA-II without user preference; (right) preference values of the
Pareto front according to the non-linear utility function in eq. (11).

0.05 · z2z1 + 0.6 · z2
1 + 0.38 · z2 + 0.23 · z1 (11)

This utility function generates two separate non-linear regions, with the
global minimum located in the left region (z1 = 0.192, z2 = 3.622). Learn-
ing curves for the resulting problem are shown in Figure 7. The linear utility
function converges to a suboptimal solution, which is actually located at the

19

left edge of the first region (z1 = 0, z2 = 4), while tuning the kernel allows to
converge to the global optimum.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples

DTLZ6: learning curves

tuned kernel
linear kernel

Figure 7: Approximation error for the non-linear DTLZ6 problem as a function
of the number of training instances: tuned kernel vs linear kernel. Results are
medians over 10 runs.

Finally, problem DTLZ7 presents a Pareto front similar to the one of DTLZ1,
as shown in Figure 8 (left). Figure 8 (right) shows the non-linear surface ob-
tained by using the following polynomial utility function:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

z2

z1

DTLZ7: Pareto front

 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

U(z)

DTLZ7: User preferences for Pareto front

z1

z2

U(z)

Figure 8: Problem DTLZ7 with two objectives: (left) Pareto front for a sample
run of plain NSGA-II without user preference; (right) preference values of the
Pareto front according to the non-linear utility function in eq. (12).

0.44 · z2
1 + 0.33 · z1 + 0.09 · z2z1 + 0.14 · z2

2 (12)

Figure 9 reports learning curves for the problem, again showing that a lin-
ear kernel is totally unable to locate the correct region, stopping at approx-
imately 33% error, while the tuned kernel version converges to the solution
(z1 = 0.148, z2 = 0.407) with less than ten training examples.

Increasing the number of iterations did not change results significantly. In
particular, using a linear kernel leads to a wrong direction when generating
new individuals and further training iterations are useless to correct this initial
behaviour.

It is interesting to note that all non-linear cases show a similar behaviour
in terms of form of the approximating model. In detail, seriously suboptimal
solutions are found in the few cases in which a linear kernel is selected. This

20

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples

DTLZ7: learning curves

tuned kernel
linear kernel

Figure 9: Approximation error for the non-linear DTLZ7 problem as a function
of the number of training instances: tuned kernel vs linear kernel. Results are
medians over 10 runs.

happens by default with only three training examples and in rare cases with
a very small numbers of examples: see for instance the spike for six examples
in Figure 9. On the other hand, excellent fits are obtained when a second
degree polynomial kernel is correctly chosen in the tuning phase. However, very
good approximations are also achieved most of the times with Gaussian kernels,
especially when enough training examples are available.

7 Conclusions

We presented a preference-based EMO algorithm (BC-EMO) characterized by
its ability to learn an arbitrary utility function from a decision maker (DM)
who expresses preferences between couples of selected solutions. The method to
build a flexible preference model, possibly highly nonlinear, is based on Support
Vector Machines and derived tools from the machine learning community. The
optimization methodology of Reactive Optimization based on the paradigm of
learning while optimizing is adopted in two directions: the progressive tuning
of a preference model following a DM interactive evaluation and personal learn-
ing path, and the automated adaptation of the model form to one which is
most appropriate, in a cross-validated manner, to the data collected during the
interaction.

The method is robust as it can potentially withstand incomplete, imprecise
and even contradictory feedback by the DM. The alternation of evolutionary
optimization and DM ranking can be organized according to a flexible schedule,
depending on the willingness by the DM to interact more times during the
solution process and by intrinsic characteristics of the problem to be solved and
the complexity of the user preferences.

The presented experimental results demonstrate the feasibility and effec-
tiveness of the BC-EMO algorithm on a variety of benchmark tasks, with both
linear and non-linear user preferences.

This research work leaves many avenues for future explorations. Future ex-
tensions of this investigation can consider a detailed analysis of the robustness
of the proposed technique in different noisy scenarios. In addition, when con-
sidering promising techniques developed in the machine learning community,
active or query learning methods are a viable candidate to further reduce the

21

number of comparisons required by the DM. The reduction can occur through
the strategic choice of future examples to be presented for evaluations, depend-
ing on the past feedback received and therefore on the current preference model.
Finally, transfer learning techniques could provide added benefits when solving
a series of related problems: we plan to evaluate the effectiveness of transferring
the previous experience accumulated in two different contexts: new and related
problems solved by the same DM (for example problems sharing a subset of the
objectives), or the same problem solved by DM’s with different preferences. Last
but not least, an extension of this work to discrete multi-objective optimization
tasks is of interest, by using the effective kernel functions recently introduced
for structured discrete structures like graphs and trees.

Acknowledgment

We acknowledge K. Deb, A. Pratap, S. Agarwal and T. Meyarivan for making
available the software NSGA-II used as a starting point to develop our experi-
ments, and T. Joachims for sharing the code of SVMlight. Part of this research
has been supported by the Project Triton funded by Provincia Autonoma di
Trento.

References

[1] J. D. Schaffer, “Multiple objective optimization with vector evaluated ge-
netic algorithms,” in Proceedings of the 1st International Conference on
Genetic Algorithms. Hillsdale, NJ, USA: L. Erlbaum Associates Inc.,
1985, pp. 93–100.

[2] N. Srinivas and K. Deb, “Multiobjective optimization using nondominated
sorting in genetic algorithms,” Evolutionary Computation, vol. 2, pp. 221–
248, 1994.

[3] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a com-
parative case study and the strength pareto approach,” Evolutionary Com-
putation, IEEE Transactions on, vol. 3, no. 4, pp. 257–271, Nov 1999.

[4] K. Deb, Multi-objective optimization using evolutionary algorithms. Wiley,
2001.

[5] P. Bosman and D. Thierens, “The balance between proximity and diversity
in multiobjective evolutionary algorithms,” IEEE Transactions on Evolu-
tionary Computation, vol. 7, no. 2, pp. 174–188, 2003.

[6] J. Branke, “Consideration of Partial User Preferences in Evolutionary Mul-
tiobjective Optimization,” in Multiobjective Optimization: Interactive and
Evolutionary Approaches. Springer-Verlag Berlin, Heidelberg, 2008, pp.
157–178.

[7] F. di Pierro, K. Soon-Thiam, and D. Savic, “An investigation on preference
order ranking scheme for multiobjective evolutionary optimization,” Evo-
lutionary Computation, IEEE Transactions on, vol. 11, no. 1, pp. 17–45,
Feb. 2007.

22

[8] I. Das, “A preference ordering among various pareto optimal alternatives,”
Structural and Multidisciplinary Optimization, vol. 18, no. 1, pp. 30–35,
1999.

[9] J. March, “Bounded rationality, ambiguity, and the engineering of choice,”
The Bell Journal of Economics, pp. 587–608, 1978.

[10] K. Miettinen, F. Ruiz, and A. Wierzbicki, “Introduction to Multiobjec-
tive Optimization: Interactive Approaches,” in Multiobjective Optimiza-
tion: Interactive and Evolutionary Approaches. Springer-Verlag Berlin,
Heidelberg, 2008, pp. 27–57.

[11] R. Battiti, M. Brunato, and F. Mascia, Reactive Search and Intelli-
gent Optimization, ser. Operations research/Computer Science Interfaces.
Springer Verlag, 2008, vol. 45.

[12] D. Jones, “A Taxonomy of Global Optimization Methods Based on Re-
sponse Surfaces,” Journal of Global Optimization, vol. 21, no. 4, pp. 345–
383, 2001.

[13] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on Evolutionary Computa-
tion, vol. 11, no. 6, pp. 712–731, 2007.

[14] J. Branke, K. Deb, K. Miettinen, and R. S lowiński, Eds., Multiobjective Op-
timization: Interactive and Evolutionary Approaches. Berlin, Heidelberg:
Springer-Verlag, 2008.

[15] H. Takagi et al., “Interactive evolutionary computation: Fusion of the ca-
pabilities of EC optimization and human evaluation,” Proceedings of the
IEEE, vol. 89, no. 9, pp. 1275–1296, 2001.

[16] B. Roy and V. Mousseau, “a theoretical framework for analysing the notion
of relative importance,” Journal of Multi Criteria Decision Analysis, 1996.

[17] R. Steuer, Multiple Criteria Optimization: Theory, Computation, and Ap-
plication. Wiley, New York, 1986.

[18] L. Tanner, “Selecting a text-processing system as a qualitative
multiple criteria problem,” European Journal of Operational Research,
vol. 50, no. 2, pp. 179–187, January 1991. [Online]. Available:
http://ideas.repec.org/a/eee/ejores/v50y1991i2p179-187.html

[19] V. V. Podinovskii, “The quantitative importance of criteria with discrete
first-order metric scale,” Autom. Remote Control, vol. 65, no. 8, pp. 1348–
1354, 2004.

[20] R. Steuer and E. Choo, “An interactive weighted Tchebycheff procedure
for multiple objective programming,” Mathematical Programming, vol. 26,
no. 3, pp. 326–344, 1983.

[21] R. Dell and M. Karwan, “An interactive MCDM weight space reduction
method utilizing a Tchebycheff utility function,” Naval Research Logistics,
vol. 37, no. 2, 1990.

23

[22] C. Cortes and V. N. Vapnik, “Support vector networks,” Machine Learning,
vol. 20, no. 3, pp. 1–25, Sep 1995.

[23] S. Menchetti, “Learning preference and structured data: Theory and ap-
plications,” Ph.D. dissertation, Universit degli Studi di Firenze, 2005.

[24] W. W. Cohen, R. E. Schapire, and Y. Singer, “Learning to order things,”
Journal of Artificial Intelligence Research, vol. 10, pp. 243–270, 1999.

[25] M. Collins and N. Duffy, “Convolution kernels for natural language,” in
Advances in Neural Information Processing Systems 14. MIT Press, 2001,
pp. 625–632.

[26] M. Collins, N. Duffy, and F. Park, “New ranking algorithms for parsing
and tagging: Kernels over discrete structures, and the voted perceptron,”
in In Proceedings of ACL 2002, 2002, pp. 263–270.

[27] C. A. Micchelli, Y. Xu, and H. Zhang, “Universal kernels,” J. Mach. Learn.
Res., vol. 7, pp. 2651–2667, 2006.

[28] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
New York, NY, USA: Cambridge University Press, 2004.

[29] C. Coello, “Handling preferences in evolutionary multiobjective optimiza-
tion: a survey,” in Evolutionary Computation, 2000. Proceedings of the
2000 Congress on, vol. 1, 2000.

[30] A. Jaszkiewicz and J. Branke, “Interactive Multiobjective Evolutionary
Algorithms,” in Multiobjective Optimization: Interactive and Evolutionary
Approaches. Springer-Verlag Berlin, Heidelberg, 2008, pp. 179–193.

[31] M. Sun, A. Stam, and R. Steuer, “Solving multiple objective programming
problems using feed-forward artificial neural networks: the interactive ffann
procedure,” Manage. Sci., vol. 42, no. 6, pp. 835–849, 1996.

[32] ——, “Interactive multiple objective programming using tchebycheff pro-
grams and artificial neural networks,” Comput. Oper. Res., vol. 27, no. 7-8,
pp. 601–620, 2000.

[33] H. Z. Huang, Z. G. Tian, and M. J. Zuo, “Intelligent interactive multiobjec-
tive optimization method and its application to reliability optimization,”
IIE Transactions, vol. 37, no. 11, pp. 983–993, 2005.

[34] T. Saaty, “Axiomatic foundation of the analytic hierarchy process,” Man-
age. Sci., vol. 32, no. 7, pp. 841–855, 1986.

[35] G. Quan, G. Greenwood, D. Liu, and S. Hu, “Searching for multiobjective
preventive maintenance schedules: Combining preferences with evolution-
ary algorithms,” European Journal of Operational Research, vol. 177, no. 3,
pp. 1969–1984, 2007.

[36] C. White, A. Sage, and A. Dozono, “A model of multiattribute deci-
sionmaking and trade-off weight determination under uncertainty,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 14, no. 2, pp. 223–
229, 1984.

24

[37] J. Figueira, S. Greco, V. Mousseau, and R. S lowiński, “Interactive Multi-
objective Optimization using a Set of Additive Value Functions,” Lecture
Notes In Computer Science, pp. 97–119, 2008.

[38] S. Phelps and M. Koksalan, “An interactive evolutionary metaheuristic
for multiobjective combinatorial optimization,” Management Science, pp.
1726–1738, 2003.

[39] M. Koksalan, M. Karwan, and S. Zionts, “An improved method for solving
multiple criteria problems involving discrete alternatives,” IEEE Transac-
tions on Systems, Man, and Cybernetics, vol. 14, no. 1, pp. 24–34, 1984.

[40] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast elitist multi-
objective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary
Computation, vol. 6, pp. 182–197, 2000.

[41] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-objective
optimization test problems,” in in Congress on Evolutionary Computation
(CEC2002, 2002, pp. 825–830.

25

