
NBI and MOGA-II,

two complementary algorithms for

Multi-Objective optimizations

Enrico Rigoni1, Silvia Poles2

1 ES.TEC.O S.r.l., Area Science Park,
Padriciano 99, 34012 Trieste, Italy

enrico.rigoni@esteco.com
2 ES.TEC.O S.r.l., Area Science Park,

Padriciano 99, 34012 Trieste, Italy
silvia.poles@esteco.com

Abstract. The NBI-NLPQLP optimization method is tested on several
multi-objective optimization problems. Its performance is compared to
that of MOGA-II: since NBI-NLPQLP is based on the classical gradient-
based NLPQLP, it is fast and accurate, but not as robust, in comparison
with the genetic algorithm. Furthermore a discontinuous Pareto frontier
can give rise to problems in the NBI’s convergence. In order to over-
come this problem, a hybridization technique coupled with a partitioning
method is proposed.

Keywords. Genetic Algorithms, Normal-Boundary Intersection, Designs
optimizations

1 Introduction

Multi-objective optimization algorithms, divided mainly into classical gradient-
based approaches and stochastic methods, have been extensively studied and
compared. The former group of methods is known to be fast and accurate but
lacking in robustness, while the latter group is known to be very robust but
requiring several steps to reach convergence.

In this paper NBI-NLPQLP and MOGA-II, which belong to the gradient-
based methods and stochastic methods respectively, have been applied to the
same test problem. The main purpose of this work was to study a hybrid tech-
nique coupled with a partitioning method; this technique combined the robust-
ness of a genetic algorithm (where the discontinuity of the Pareto frontier gave
rise to problems for NBI) with the speed of NBI to speed up the genetic algo-
rithm.

2 Description of the algorithms

This section gives the reader a short description of the two algorithms employed.
The work concentrates on these two algorithms since both are implemented in the

Dagstuhl Seminar Proceedings 04461
Practical Approaches to Multi-Objective Optimization
http://drops.dagstuhl.de/opus/volltexte/2005/272



2 E. Rigoni, S. Poles

commercial optimization software, modeFRONTIER [1]. Moreover, the multi-
objective genetic algorithm (MOGA-II) has been demonstrated to perform as
well as a well-tested evolutionary multi-objective methodology such as NSGA-II
[2].

2.1 NBI-NLPQLP

The NBI-NLPQLP scheduler is a multi-objective scheduler based on the Normal-
Boundary Intersection (NBI) method developed by I. Das and J. E. Dennis [3],
coupled with the SQP algorithm developed by Prof. K. Schittkowski [4].

The NBI method applies to any generic smooth multi-objective problem,
and it reduces the problem to many single-objective constrained subproblems,
the so called NBI subproblems. The problem to be solved is at least subject
to the restrictions imposed by the single-objective solver coupled with the NBI
method, in this case the NLPQLP algorithm. For this reason the problem has
to be at least smooth and well scaled.

Furthermore the NBI method imposes its own restrictions, since it needs a
sufficiently regular Pareto curve in order to work properly.

This method starts considering each objective function separately, as an
individual single-objective subproblem. Each subproblem is solved using the
NLPQLP algorithm. Afterwards all the NBI subproblems are solved succes-
sively; the knowledge about the solution of the previous subproblem is used
as the starting point for the next subproblem, in order to improve the algorithm
convergence speed. In fact the NBI method orders efficiently the subproblems,
in order that the solutions of two successive subproblems are expected to be
close to each other. In this way the NBI subproblem is expected to converge in
relatively few iterations. The number of NBI subproblems determines the “res-
olution” of the Pareto frontier. Clearly larger values for this parameter imply
a better resolution of the Pareto frontier, at the cost of demand for more and
more design evaluations.

Figure 1 shows graphically the working of the NBI method, and the aspect
of one single NBI-subproblem. The problem has two objectives to be minimized,
and the figure shows the objectives space.

The shaded area represents the region of feasible designs. The thick line is
the Pareto frontier. The point A is the minimum of the first objective function
f1, while B minimizes the second objective f2: the point F∗ is then the utopia
point1.

In this example the convex hull of individual minima (CHIM) corresponds
to the line segment AB. Any NBI subproblem is specified giving its barycentric
coordinates (weights), β: for example the NBI subproblem outlined in the figure
corresponds to β = (0.75, 0.25). These values fix the position of the point H
along the CHIM: in fact the components of the vector β are, respectively, the
normalized lengths of the segments BH and AH (the normalization is made over
the length of the segment AB).

1 For the nomenclature used in this section refer to [3].



NBI and MOGA-II 3

0 1 2 3 4 5

0

1

2

3

4

5

f1

f2

� �

�

�

�

A

BF
∗

P

H

n

Fig. 1. The point P is the solution of the single-objective constrained NBI-
subproblem outlined with the dashed red line n.

The line n is the quasi-normal direction passing through H, and it represents
the constraints introduced by the NBI subproblem. The point P is then the
solution of the single-objective constrained NBI-subproblem. The length of the
segment HP represents the new variable introduced by the NBI subproblem.

2.2 MOGA-II

MOGA-II is an improved version of MOGA (Multi-Objective Genetic Algorithm)
by Poloni [5],[6],[7],[8] and is not to be confused with MOGA by Fonseca and
Fleming [9] with which it shares only the same acronym. MOGA-II uses a smart
multisearch elitism for robustness and directional crossover for fast convergence.
Its efficiency is ruled by its operators (classical crossover, directional crossover,
mutation and selection) and by the use of elitism.

Encoding in MOGA-II is done as in classical genetic algorithms and it uses
four different operators for reproduction: classical crossover, directional crossover,
mutation and selection. At each step of the reproduction process, one of the four
operators is chosen (with regard to the predefined operator probabilities) and
applied to the current individual.

Directional crossover assumes that a direction of improvement can be de-
tected comparing the fitness values of two reference individuals. In [10] a novel
operator called evolutionary direction crossover was introduced and it was shown
that even in the case of a complex multimodal function this operator outperforms
classical crossover.

The direction of improvement is evaluated by comparing the fitness of the
individual Indi from generation t with the fitness of its parents belonging to
generation t − 1. The new individual is then created by moving in a randomly
weighted direction that lies within the ones individuated by the given individual
and his parents (see Figure 2). A similar concept can be however applied on



4 E. Rigoni, S. Poles

the basis of directions not necessarily linked to the evolution but detected by
selecting two other individuals Indj and Indk in the same generation.

�

�

�

�

Indi

Indj

Indk

NewIndi

Fig. 2. Directional crossover between individuals Indi, Indj and Indk.

The selection of individuals Indj and Indk can be done using any available
selection schema. In MOGA-II local tournament with random steps in a toroidal
grid is used. First of all, the individual subject to reproduction is chosen as the
starting point. Other individuals met in a random walk of assigned number of
steps from that starting point are then marked as possible candidates for the
first ”parent” Indj . The list of all possible candidates for the second ”parent”
Indk is selected in the same way in a successive (and generally different) random
walk from the same starting point. When the set of candidates is generated, the
candidate with the best fitness is chosen. The number of steps N in the random
walk remains fixed during the entire optimization run and is proportional to the
population size.

The directional crossover operator has demonstrated to help the algorithm
convergence for a wide range of numerical problems.

3 Benchmark problems

In this work the NBI-NLPQLP scheduler is tested on the following five bench-
mark problems.

The objective space plots of these problems are presented in Figure 3, on
page 6: the feasible and unfeasible domains are clearly seen, as are the set of
non-dominated solutions, i.e. the Pareto frontier.

3.1 no-hole

This example is the hole function problem [11] but without the hole 2, where the
hardness parameter, h, is set to 2. The problem has two design variables and
two objective functions to be minimized. The objectives are

f1 = (t+ 1)2 + a

f2 = (t− 1)2 + a , (1)

2 The hole is easily deleted by simply setting b = 0 (see Section 3.5, Eqs. 13).



NBI and MOGA-II 5

where

t ∈ [−1, 1] , a ∈ [0, 4] . (2)

a and t are both function of the design variables x and y:

x ∈ [−1, 1] , y ∈ [−1, 1] , (3)

(see appendix A for details).

3.2 DEB

This constrained optimization problem is described in [12]. The problem is sub-
ject to two constraints, and it has two design variables and two objective func-
tions to be minimized. The objectives are

f1 = x1

f2 = (1 + x2)/x1 , (4)

where

x1 ∈ [0.1, 1] , x2 ∈ [0, 5] , (5)

are the two design variables. The two linear constraints are

g1 = x2 + 9x1 ≥ 6

g2 = −x2 + 9x1 ≥ 1 . (6)

3.3 TNK

This constrained test example, cited in [12], has two design variables, two objec-
tive functions to be minimized, and two non-linear constraints. The objectives
are simply

f1 = x1

f2 = x2 , (7)

where

x1 ∈ [0, π] , x2 ∈ [0, π] , (8)

while the constraints are

g1 = −x1
2 − x2

2 + 1 + 0.1 cos(16 arctan(x2/x1)) ≤ 0

g2 = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5 . (9)



6 E. Rigoni, S. Poles

0 2 4 6 8
0

2

4

6

8

f1

f 2
no−hole problem

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

f1
f 2

DEB problem

0 0.5 1 1.5
0

0.5

1

1.5

f1

f 2

TNK problem

0 20 40 60
0

10

20

30

40

50

f1

f 2

POL problem

0 2 4 6 8
0

2

4

6

8

f1

f 2

hole problem

Fig. 3. The five benchmark problems’ objective space. The gray shaded area
represents the domain of feasible designs, while the yellow area depicts the un-
feasible region of broken constraints. The dots are the minima for each single
objective function; the thick blue curve represents the Pareto frontier, i.e. the
sought solution.



NBI and MOGA-II 7

3.4 POL

This is the Poloni test problem: in this case, the two objective functions to be
minimized are

f1 = 1 + (a− b)2 + (c− d)2

f2 = (x+ 3)2 + (y + 1)2 . (10)

where the parameters present in f1 are

a = 0.5 sin(1) − 2.0 cos(1) + 1.0 sin(2) − 1.5 cos(2)

b = 0.5 sin(x) − 2.0 cos(x) + 1.0 sin(y) − 1.5 cos(y)

c = 1.5 sin(1) − 1.0 cos(1) + 2.0 sin(2) − 0.5 cos(2)

d = 1.5 sin(x) − 1.0 cos(x) + 2.0 sin(y) − 0.5 cos(y) , (11)

and the variables ranges are

x ∈ [−π, π] , y ∈ [−π, π] . (12)

3.5 hole

This example is the hole function problem [11]: here the hole feature is fully
implemented (compare with the no-hole example, Section 3.1, and see Figure 3).
The hardness parameter, h is set to 2. The objectives are

f1 = (t+ 1)2 + a+ b exp
[

−c (t− d)2
]

f2 = (t− 1)2 + a+ b exp
[

−c (t+ d)2
]

, (13)

where b, c, and d depend only on a (see appendix A for details).

4 Parameters setting

Unless otherwise stated, the parameters of the NBI-NLPQLP scheduler are set
to these values:

Maximum Number of Iterations per Subproblem : 500

Approximate Derivatives With : Forward Differences

Number of Pareto Points (Subproblems) : 10

Final Termination Accuracy : 1.0E-5

Finite Difference Relative Perturbation : 1.0E-7

Finite Difference Minimum Perturbation Policy : Constant

Constant Minimum Perturbation : 1.0E-7

Apart from the Approximate Derivatives With value, all the others are the
default values.

The most important parameter for our purposes is the Number of Pareto

Points (Subproblems): the number of NBI subproblems determines the “res-
olution” of the Pareto frontier that the user wants to achieve. Larger values for



8 E. Rigoni, S. Poles

this parameter imply a better resolution of the Pareto frontier, at the cost of
demand for more and more design evaluations. In the benchmark problems we
will change this parameter in order to analyse the results and the computational
demand for different values.

Also the Final Termination Accuracy value has an important role: the
default value, 10−5, allows us to obtain good precision of results. The drawback
is that such high accuracy could be prohibitive for some problems, inherently the
problem’s complexity and intrinsic precision: if this is the case, the user should
relax that value, in order to allow NLPQLP to work properly. NNBI = 10

As with MOGA-II [2] — here used as a comparison — the design variables
need to be discretized: a base value equal to 100001 is chosen for each variable.
The algorithm’s parameters are set to the default values, unless otherwise stated.
The Design of Experiments (i.e. the set of initial designs, hereafter DOE) is the
same as that used for NBI-NLPQLP, and the number of generations is chosen
such that there will be almost the same number of evaluated designs, thereby
guaranteeing a fair comparison.

5 Results

In this section the results are presented: for each problem there is a table, con-
taining information on the problem settings and algorithm’s performance. The
legend below explains the symbols and abbreviations used in the tables.

– The column param specifies the parameter settings for each run.
NNBI : this is the Number of Pareto Points (Subproblems) parameter value (see

Section 4).
a : the Final Termination Accuracy parameter value (refer again to Section 4).
T : this symbol indicates that there are some particular settings, which will be

explained in detail below.
P : this is the identity number of each single run, introduced for reference purposes.

– The column DOE specifies the Design Of Experiments scheme used in that specific
run.
nR-m (where n and m are two integers): n DOE designs are generated by means

of the Random Sequence algorithm, with a Random Generator Seed equal to
m.

nS : n DOE designs generated by means of the pseudo random Sobol sequence.
imp : stands for “improved” starting DOE. As described below, the scheduler

requested a restart, suggesting the inclusion of some new designs in the original
DOE. So these new entries are added in the DOE.

– The result column contains the scheduler exit status.
OK : the scheduler ended regularly.
F : the scheduler ended with ERROR - FAILED INITIAL SEARCH. The algorithm

was not even able to find the starting minima for the single objective functions.
Often in this case, the error is due to the NLPQLP solver, which exits with
ERROR - EXCEEDED THE MAX NUMBER OF ITERATIONS 20. This case is symp-
tomatic of a complex problem and/or a bad value for the Final Termination

Accuracy: it is useful to try again decreasing the accuracy, i.e. increasing the
parameter value (e.g., from a =1.0E-5 to a =1.0E-2 or higher).



NBI and MOGA-II 9

I : the scheduler ended with WARNING - Improved Starting Single-Objective

Optima - Restart the scheduler including in the DOE the following designs ...

This means that the starting minima for the single objective functions were
only local minima. Then it is useful to re-run the problem, including the sug-
gested new entries in the DOE.

Bn (where n is an integer): the scheduler ended with WARNING - FAILED n NBI

Subproblems. This means that n out of the total NNBI subproblems failed.

* : the algorithm managed to find the Pareto frontier only partially. In case of a
discontinuous Pareto set, this means that some parts of the disconnected curve
have not been mapped.

L : at least one of the starting minima for the single objective functions was only a
local minimum. However, unlike case I, the scheduler was not able to recognize
this.

– The column neval indicates the number of total evaluated designs (including in
the count the evaluation of the initial DOE designs). This value quantifies the
computational effort of the algorithm.

– The column nPareto shows the number of designs belonging to the Pareto set: it
could be useful to estimate the success of the algorithm.

Note: it is worth putting a warning on the OK and Bn exit statuses. An
OK result does not automatically guarantee that the algorithm achieved a good
solution, in other words that it reached the complete Pareto set: in fact we must
remember that NBI-NLPQLP is a local optimizer, and so can always get stuck
in a local solution (see [13]). On the other hand, a Bn exit status — in the
case that n is not a considerable fraction of NNBI — should not be regarded
necessarily as a bad result: even if some subproblems fail, others may be good
solutions, even achieving a good mapping of the Pareto frontier.

5.1 no-hole

Even though this problem is well scaled, and the Pareto frontier is continuous
and regular (see Figure 3), the problem is not so trivial. As stated in Section 3.1,
the hardness parameter is set to 2: this choice makes the task harder (compare
with [13]), “hiding” the Pareto set in the design space.

As shown in Table 1, with all parameters set to default values (P: 1–4), all the
runs failed (F): this problem is a complex one, and it seriously engages the NBI-
NLPQLP scheduler. Furthermore the default accuracy is probably well beyond
the intrinsic precision of the problem. So the Final Termination Accuracy

value has to be tuned, in order to make the algorithm work properly: a relaxed
value for accuracy, say a =1.0E-2, is chosen (P: 5–8). With this choice we cannot
avoid some Bn results — which show again the problem’s intrinsic complexity
— but at least we avoid complete failure.

P = 7 shows that a “bad” DOE (in this case the 10R-3 DOE), can confuse the
algorithm, because one of the found starting minimum is a bad point. However,
in this case the algorithm is able to recognize this event, and issues a warning
that the problem should be rerun, including the suggested new entries in the
DOE. The subsequent run, P = 7b, fully recovers the problem.



10 E. Rigoni, S. Poles

param P DOE result neval nPareto

NNBI = 10 1 10R-1 F — —
a =1.0E-5 2 10R-2 F — —

3 10R-3 F — —
4 10S F — —

NNBI = 10 5 10R-1 B2 1238 16
a =1.0E-2 6 10R-2 B1 680 21

7 10R-3 I — —
7b “ imp B1 763 16
8 10S OK 863 23

NNBI = 20 9 10R-1 B3 2837 25
a =1.0E-2 10 10R-2 B6 2315 30

11 10R-3 I — —
11b “ imp B3 2317 26
12 10S B5 2743 27

Table 1. no-hole problem results.

In order to evaluate the computational demand of NBI-NLPQLP, we change
the Number of Pareto Points (Subproblems) parameter, doubling its value,
to 20. The results are presented in Table 1, along with the runs P: 9–12.

The comparison between the performance of NBI-NLPQLP and that of
MOGA-II (for run P = 5) is shown in Figure 4a: NBI-NLPQLP maps the whole
Pareto frontier while MOGA-II is able to map only a portion of the frontier.

In order to preserve consistency between results, MOGA-II was run using the
same DOE (10R-1), while the number of generations was set such that the total
(non-repeated) number of evaluated designs was as close as possible to that of
the NBI-NLPQLP run.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f1

f 2

no−hole problem
NBI−NLPQLP
MOGA−II

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f1

f 2

no−hole problem
NBI−NLPQLP
MOGA−II

(a) (b)

Fig. 4. (a) NBI-NLPQLP results (P = 5), vs. MOGA-II results. (b) NBI-
NLPQLP results for the case P = 9, vs. MOGA-II results with 20R-1.



NBI and MOGA-II 11

It is worth noting that in this case the performance of MOGA-II increases
as we increase the number of DOE, using e.g. 20R-1, reducing consequently the
number of generations (in order to keep constant the total number of evaluated
designs). This is because this complex problem seems to demand a sufficiently
large number of individuals, in order to avoid saturation of solutions. The spread
of points of MOGA-II with 20R-1 is better than its run with 10R-1, even if the
qualitative behaviour is the same: MOGA-II maps only a portion of the Pareto
set.

Figure 4b shows the good spread of NBI-NLPQLP solutions for the run P = 9,
i.e. for NNBI = 20. MOGA-II was run with 20R-1, for the reason previously
stated; MOGA-II densely covers the Pareto set, but only a portion of it.

5.2 DEB

In this problem the upper left limit of the Pareto frontier is given by one of the
two constraints, while the border of the bottom part is caused by the domain
definition (see Figure 3). This problem is not so simple because of constraints.

NBI-NLPQLP is very efficient in finding the true Pareto set, as shown in
Table 2: with default parameters setting, all the runs (P: 1–4) ended regularly
and successfully.

param P DOE result neval nPareto

NNBI = 10 1 10R-1 OK 95 55
2 10R-2 OK 95 47
3 10R-3 OK 92 51
4 10S OK 86 47

NNBI = 20 5 10R-1 OK 137 84
6 10R-2 OK 137 75
7 10R-3 OK 134 79
8 10S OK 128 75

Table 2. DEB problem results.

Also with NNBI = 20 (P: 5–9) the computational effort is limited, while the
results are excellent.

The comparison between the performance of NBI-NLPQLP (NNBI = 10,
P = 1) and that of MOGA-II is presented in Figure 5a: since NBI-NLPQLP is
very fast, it beats MOGA-II, given the same number of total evaluated designs.
Obviously MOGA-II is also able to find the true Pareto frontier and to map it
well, but it takes longer, since NBI-NLPQLP is a gradient based method.

This result is also more evident in Figure 5b, where it is shown the run P = 5
for NBI-NLPQLP, i.e. with NNBI = 20.



12 E. Rigoni, S. Poles

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

f1

f 2

DEB problem

NBI−NLPQLP
MOGA−II

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

f1

f 2

DEB problem

NBI−NLPQLP
MOGA−II

(a) (b)

Fig. 5. (a) NBI-NLPQLP P = 1, vs. MOGA-II. (b) NBI-NLPQLP P = 5, vs.
MOGA-II.

5.3 TNK

All the difficulties of this problem are due to the constraints. The shape of the
margin between the feasible and unfeasible regions in the bottom left portion
is particularly complex: it is such that it causes the Pareto frontier to be dis-
continuous (see Figure 3). This issue is of particular interest to our purposes:
in fact we want to test the performance and robustness of NBI-NLPQLP in the
presence of a non regular Pareto curve.

In spite of a discontinuous Pareto curve, NBI-NLPQLP performs well, as can
be seen in Table 3. All runs ended regularly and successfully, both for NNBI = 10
(P: 1–4), and for NNBI = 20 (P: 5–9).

param P DOE result neval nPareto

NNBI = 10 1 10R-1 OK 132 9
2 10R-2 OK 135 9
3 10R-3 OK 135 9
4 10S OK 133 9

NNBI = 20 5 10R-1 OK 217 20
6 10R-2 OK 220 20
7 10R-3 OK 220 20
8 10S OK 218 20

Table 3. TNK problem results.

This is better seen in Figure 6a: NBI-NLPQLP maps all three partial Pareto
curves. The algorithm is very efficient in managing this task.

This is even more obvious in Figure 6b, with the run P = 5, i.e. NNBI = 20. In
this case the comparative difference between the performance of NBI-NLPQLP
and that of MOGA-II is striking.



NBI and MOGA-II 13

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

f1

f 2

TNK problem
NBI−NLPQLP
MOGA−II

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

f1

f 2

TNK problem
NBI−NLPQLP
MOGA−II

(a) (b)

Fig. 6. (a) NBI-NLPQLP P = 1, vs. MOGA-II. (b) NBI-NLPQLP P = 5, vs.
MOGA-II.

5.4 POL

This problem is a complex one, since the Pareto curve is discontinuous: the
Pareto set is divided into two parts (see Figure 3). The situation here is quite
different from the previous TNK case, where the discontinuity was caused by
the shape of one constraint function. In fact here the discontinuity is generated
intrinsically by the objective functions structure. So we can expect this problem
to be harder.

As shown in Table 4, the NBI-NLPQLP results are not good: using default
parameters setting all the runs (P: 1–4) present a variety of problems. It is worth
analyzing them in detail.

param P DOE result neval nPareto

NNBI = 10 1 10R-1 OK*L 108 79
2 10R-2 B4* 231 83
3 10R-3 B4* 233 97
4 10S B4* 249 97

NNBI = 10, T 5 10R-2 OK 197 55

NNBI = 10, T 6 — OK 88 80
7 — OK 122 108

NNBI = 20, T 8 — OK 145 134
9 — OK 197 183

Table 4. POL problem results.

The first run, P = 1, is different from others: in this case the scheduler ends
with an apparent OK status. But reality is quite different: the problem is that
the starting minimum for f1 is only a local minimum (case L in Table 4). In fact



14 E. Rigoni, S. Poles

afterwards NBI-NLPQLP is able to detect only the bottom part of the Pareto
frontier (case marked * in Table 4). This can be seen in Figure 7-a, which shows
run P = 1. This behaviour is due to an “unlucky” starting DOE (10R-1).

0 5 10 15 20
0

5

10

15

20

25

f1

f 2
POL problem

P = 1
10R−1

(a)

0 5 10 15 20
0

5

10

15

20

25

f1

f 2

POL problem
P = 2
10R−2

(b)

0 5 10 15 20
0

5

10

15

20

25

f1

f 2

POL problem
P = 5
10R−2

(c)

0 5 10 15 20
0

5

10

15

20

25

f1

f 2

POL problem
MOGA−II
10R−1

(d)

Fig. 7. NBI-NLPQLP for P = 1, 2, 5 cases, and MOGA-II with 10R-1 DOE and
23 generations (for a total of 199 non-repeated designs).

The failures in runs P: 2–4 are of a different nature: here NBI-NLPQLP finds
the right starting global minima, but again fails to find the upper piece of the
Pareto curve (* in table). The run P = 2 is shown in Figure 7-b. In Figure 7
all the evaluated designs are shown, plotted as gray dots, apart from the Pareto
designs, plotted as coloured dots as usual. This fact highlights the problem: in
solving the subsequent NBI subproblems — going from bottom right to top left
— it is clear that the algorithm gets lost in the discontinuity. The algorithm is
not able to jump the discontinuity, and so is unable to find the upper portion
of the Pareto set. This fact has to be ascribed to the intrinsic complexity of the
problem, in particular to the nature and shape of the discontinuity.

As a countercheck it is worth trying a test run: in P = 5, we use again 10R-2
as in P = 2, but instead of using the normal direct order in solving the subsequent
series of NBI subproblems, we solve them in reverse order. The remarkable result
shown in Table 4 (an OK run with both parts of the Pareto frontier mapped),
can be directly seen in Figure 7-c: evidently going from top left to bottom right
is a simpler task than solving the other way round. Clearly this feature is a
characteristic of the POL problem. In general we cannot know a priori if it is



NBI and MOGA-II 15

better to go in one direction or another. So in the NBI-NLPQLP scheduler it is
not up to the user to decide on the order of solution of the NBI subproblems. So
we have to find a technique to overcome this problem, which will be presented
below.

MOGA-II performance is shown in Figure 7-d: with 10R-1 DOE and 23 gen-
erations we have a total of 199 non-repeated evaluated designs, so this case is
almost comparable with runs P = 2, and P = 5. MOGA-II results are by far
the best ones, in terms of robustness. Consider also that 10R-1 was the DOE of
run P = 1, where NBI-NLPQLP even failed to find the global minimum of f1.
So in this case the comparison between the performance of NBI-NLPQLP and
that of MOGA-II works in favour of MOGA-II. MOGA-II is better because of
its robustness, compared to the intrinsic fragility of NBI-NLPQLP — triggered
in this POL problem by the nature of the Pareto curve discontinuity —.

Hybridization technique In this subsection we address the issue of combining
the robustness of MOGA-II with the accuracy and speed of NBI-NLPQLP. This
task is generated by the need to overcome the fragility of NBI-NLPQLP in the
case of a discontinuous Pareto frontier: it is highly advisable to have a tool able
to detect and map each single part of the Pareto curve well, without missing any
portion.

In order to manage this problem, here we propose a hybridization tech-

nique coupled with a partitioning method.
The hybridization technique consists of combining a preliminary robust MOGA-

II run with subsequent accurate NBI-NLPQLP runs. Since discontinuities can
give rise to problems in NBI-NLPQLP convergence, we can isolate each single
portion of the Pareto curve as an independent problem. We do this by introduc-
ing some new constraints in the objective space, extracting the relevant part of
the Pareto set one at time: we call this procedure the partitioning method. We
can do this by means of the knowledge of the problem we gained from the initial
MOGA-II run. Each single isolated part of the Pareto curve can be now regarded
as a good NBI-NLPQLP problem, since the local Pareto frontier is contiguous.

Let’s apply this procedure to the POL problem, in order to see how it works.
We can start from the MOGA-II run shown in Figure 7: from this robust run we
can recognize the fact that the Pareto curve is separated into two distinct parts.
We can treat them separately — one at time — by introducing, for example, the
following constraints:

f2 − 0.6 · f1 − 4 < 0 , (14)

that allows the isolation of the bottom part, while

f2 − 0.6 · f1 − 18 > 0 , (15)

effectively separates the upper left part. These linear constraints are shown
graphically in Figure 8 as dashed lines.

In Figure 8-a we simply report the results of MOGA-II, already presented
in Figure 7, as red dots. The four green triangles are the designs we selected as



16 E. Rigoni, S. Poles

0 5 10 15 20
0

5

10

15

20

25

f1

f 2

POL problem
MOGA−II

(a)

0 5 10 15 20
0

5

10

15

20

25

f1

f 2

POL problem
P = 8 & 9

(b)

Fig. 8. Hybridization technique: (a) the results obtained with MOGA-II (red
dots), and the points used as the starting DOE for the two subsequent separate
NBI-NLPQLP runs (green triangles). The two dashed lines represent the newly
introduced constraints. (b) the superimposition of the two NBI-NLPQLP runs
P = 8 and P = 9.

DOE for the subsequent separate NBI-NLPQLP runs. The logic of this choice is
clear: each couple of points spans the relevant portion of the Pareto curve to its
maximal extension, as known so far.

The results are shown in Table 4: both for NNBI = 10 (P = 6, 7), and for
NNBI = 20 (P = 8, 9) the mapping of each single Pareto portion ended regularly
and successfully. Runs P = 6, 8 refer to the problem of finding the bottom part
of the Pareto frontier (i.e. that one identified by the constraint equation 14),
while runs P = 7, 9 isolate the upper left part of the Pareto set (Eq. 15). Note
that for this latter case the nPareto column of Table 4 gives the number of designs
belonging to the local Pareto set.

Results for the “high resolution” (i.e. NNBI = 20) cases P = 8, 9 are plotted
in Figure 8-b: the quality of the NBI-NLPQLP mappings of the two portions is
evident, in terms of both accuracy and uniformity of points distribution. It is
worth noting that these subsequent NBI-NLPQLP runs are able to stretch the
Pareto set portions to their full extent, even for the right part of the bottom
portion, where the previous MOGA-II run was lacking.

5.5 hole

As seen in Section 3.5, the hole problem is only a complication of the no-hole
problem of Section 3.1: the hole feature is now implemented, as shown in Fig-
ure 3; we can expect, therefore, even harder problems than those encountered in
Section 5.1, faced now with the enhanced complexity caused by the introduction
of a discontinuous Pareto frontier.

Keeping in mind the results of Section 5.1, we set the Final Termination

Accuracy to a =1.0E-2 for all the runs presented in this section. This setting is
implicitly assumed, and is not displayed in Table 5.



NBI and MOGA-II 17

The results for all the runs with default parameter settings (P: 1–4) are not
good (see table 5): NBI-NLPQLP is able to map only the bottom part of the
Pareto frontier. It gets lost in the discontinuity, while solving the subsequent
NBI subproblems, going from bottom right to top left.

param P DOE result neval nPareto

NNBI = 10 1 10R-1 B3* 756 32
2 10R-2 B2* 680 18
3 10R-3 B3* 632 17
4 10S B1* 708 9

NNBI = 10, T 5 10R-1 OK* 632 13

NNBI = 10, T 6 — B2 665 31
7 — B1 491 59

NNBI = 20, T 8 — B3 822 28
9 — B3 782 30

Table 5. hole problem results.

The same happens if we go the other way round: in P = 5, we again use 10R-
1 as in P = 1, but we set the reverse order for NBI subproblems solving. Both
P = 1 (direct order) and P = 5 (reverse order) are shown in Figure 9. Note that
for P = 1 (Figure 9-a) the algorithm mapped only the bottom portion of the
Pareto curve3, while for P = 5 (Figure 9-b) it mapped only the top left portion.
So now the situation is perfectly symmetrical: we cannot jump the unavoidable
discontinuity, whichever direction we solve in. This is different from the POL
problem, where the discontinuity was asymmetrical, and the direction we solved
in made a difference (see Section 5.4, page 14).

As regards MOGA-II, results are shown in Figure 10. As seen in Section 5.1
for the no-hole problem, the performance of MOGA-II increases by increasing
the number of DOE: so here we use 20R-1, instead of 10R-1. For this run, the
number of generations has been set to 39, obtaining a total of 691 non-repeated
evaluated designs: hence in this way results are directly comparable to those
of NBI-NLPQLP (i.e. the runs P = 1 and 5 of Figure 9). The performance
comparison clearly shows that MOGA-II results are better, since MOGA-II is
able to map both portions of the Pareto frontier. It is worth noting that each
single NBI-NLPQLP run is more accurate in finding its relevant Pareto part, with
respect to MOGA-II, but fails in the overall task. MOGA-II is less accurate, but
its robustness is the key feature of its success.

3 Note that the points belonging to the upper part of the Pareto curve have been gen-
erated in the initial single-objective minimization of f1, and not during a subproblem
solving.



18 E. Rigoni, S. Poles

0 1 2 3 4
0

1

2

3

4

f1

f 2

hole problem

P = 1
10R−1

(a)

0 1 2 3 4
0

1

2

3

4

f1

f 2

hole problem

P = 5
10R−1

(b)

Fig. 9. (a) P = 1 run (direct order); (b) P = 5 (reverse order).

0 1 2 3 4
0

1

2

3

4

f1

f 2

hole problem

MOGA−II
20R−1

Fig. 10. MOGA-II run with 20R-1 DOE and 39 generations (for a total of 691
non-repeated designs).



NBI and MOGA-II 19

Hybridization technique Given these premises, it is worth trying to combine
the robustness of MOGA-II with the accuracy of NBI-NLPQLP, through the
implementation of the hybridization technique.

For the initial MOGA-II run, instead of using the one shown in Figure 10,
we can take an even “lighter” version, since we want to achieve only a good
starting base for the subsequent NBI-NLPQLP runs. Again we use 20R-1 DOE,
but with only 20 generations, for a total of 355 non-repeated evaluated designs.
The results are shown in Figure 11-a.

0 1 2 3 4
0

1

2

3

4

f1

f 2

hole problem

MOGA−II

(a)

0 1 2 3 4
0

1

2

3

4

f1

f 2

hole problem

P = 6 & 7

(b)

Fig. 11. Hybridization technique: (a) the results obtained with MOGA-II (red
dots), and the starting DOE for the subsequent NBI-NLPQLP runs (green tri-
angles). (b) the superimposition of the two NBI-NLPQLP runs P = 6 and P = 7.
The two dashed lines represents the new introduced constraints.

The two independent Pareto frontier portions can be isolated introducing the
following constraints:

f2 − f1 < −0.4 , (16)

for the bottom part, and

f2 − f1 > 0.4 , (17)

for the top left part. The constraints are presented in Figure 11 as dashed lines.
The DOE for the two subsequent NBI-NLPQLP runs are highlighted in green

in the MOGA-II results, in Figure 11-a. The results for these two independent
NBI-NLPQLP runs are presented in Table 5: runs P = 6, 7 refer to NNBI = 10,
while for runs P = 8, 9 the setting is NNBI = 20. Runs P = 6, 8 relate to the
bottom part problem, while runs P = 7, 9 relate to the top left part of the Pareto
frontier.

On Figure 11-b the P = 6, 7 (i.e. NNBI = 10) results are presented together:
the two separated portions of the Pareto set are well represented. So also in this
case the hybridization technique is successful.



20 E. Rigoni, S. Poles

Finally, a note of caution: the results for the cases P = 8, 9 (i.e. NNBI = 20)
seem to deteriorate, instead of improving as expected. So this means that there
is a residual intrinsic fragility in the procedure (pointed out also with other
benchmarking conditions, not reported here), since results depend on problem
conditions. This fragility cannot be totally eliminated. This fact should warn us
that the hybridization technique can be regarded as a useful tool for improv-
ing the robustness of solutions, but cannot be considered as a panacea for all
problem.

6 Conclusions

NBI-NLPQLP is an accurate and fast converging algorithm, since it is based
on a classical gradient based method, i.e. NLPQLP. The drawback is its low
robustness, especially when compared to that of MOGA-II.

The overall performance of NBI-NLPQLP on the benchmarking multi-objective
optimization problems presented in this report is good: the algorithm is very ef-
ficient in finding the true Pareto frontier, and in mapping it almost uniformly.
Even in one case of a discontinuous Pareto frontier (the TNK problem), NBI-
NLPQLP is able to find and map uniformly all the portions of the Pareto curve.
In other two cases (the POL and hole problems), characterized by a “strong”
discontinuity in the Pareto frontier, we overcome the limited performance of
NBI-NLPQLP by applying successfully an hybridization technique, combining
the robustness of MOGA-II with the accuracy and speed of NBI-NLPQLP. This
methodology consists of starting with a preliminary robust MOGA-II run, then
isolating each single portion of the Pareto curve as an independent problem,
each of which is treated with an independent accurate NBI-NLPQLP run.

While this paper was in preparation, Shukla and Deb [14] published a similar
work comparing an evolutionary multi-objective optimizer with NBI and other
classical methodologies. The conclusions of these authors differ in that they made
a direct comparison between the performance of the two methodologies outlin-
ing the robustness of the evolutionary methods. Our results do not contradict
these findings since we coupled the two methodologies within the hybridization
framework in order to combine the robustness of the evolutionary methods with
the speed and accuracy of NBI.



NBI and MOGA-II 21

A Hole problem

In this appendix the hole functions problem details are presented, for sake of
completeness. Refer to [11] for a full description.

The problem can be summarized as in the following scheme:

Hole problem

design variables
x ∈ [−1, 1] , y ∈ [−1, 1]

function parameters
q = 0.2 , p = 2 , d0 = 0.02

problem hardness
h = 2.0

translation

δ = 1 −
√

2/2
x′ = x + δ
y′ = y − δ

rotation of 45 deg
α = π/4
x′′ = x′ · cos α + y′ · sin α
y′′ = −x′ · sin α + y′ · cos α

scale of π
x′′′ = x′′ · π
y′′′ = y′′ · π
change into problem coordinates
u = sin(x′′′/2) , u ∈ [−1, 1]
v = sin2(y′′′/2) , v ∈ [0, 1]

apply hardness

u′ = uh if u ≥ 0 ; u′ = −(−u)h if u < 0

v′ = v1/h

change into problem parameters
t = u′ , t ∈ [−1, 1]
a = v′ · 2p , a ∈ [0, 2p]

other parameters computation
b = (p − a) exp(q) if a ≤ p ; b = 0 if a > p
d = q/2 · a + d0

c = q/d2

objective functions
min f1 = (t + 1)2 + a + b exp[−c (t − d)2]
min f2 = (t − 1)2 + a + b exp[−c (t + d)2]

The problem has two design variables, x and y, and two objective functions
to be minimized, f1 and f2. The parameter h controls the problem hardness: the
higher h, the harder the problem.

The hole feature can easily be deleted by setting b = 0, ∀a: this gives the
no-hole problem.

References

1. modeFRONTIER version 3 Documentation. See also URL http://www.esteco.com



22 E. Rigoni, S. Poles

2. S. Poles. Bench-marking MOGA-II. Technical report 2004-001, ESTECO, Trieste,
2003, http://www.esteco.com.

3. Das, I., and Dennis, J. E. 1998, Normal-Boundary Intersection: A New Method for
Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems,
SIAM Journal on Optimization, 8(3), 631

4. Schittkowski, K. 2001, NLPQLP: A New Fortran Implementation of a Sequential
Quadratic Programming Algorithm - User’s Guide, Report, Department of Math-
ematics, University of Bayreuth

5. G. Mosetti and C. Poloni. Aerodynamic shape optimization by means of a ge-
netic algorithm. 5th International Symposium on Computational Fluid Dynamics,
Sendai, Japan, 1993.

6. C. Poloni and V. Pediroda. GA coupled with computationally expensive simula-
tions: tools to improve efficiency. In Genetic Algorithms and Evolution Strategies in
Engineering and Computer Science, pages 267–288, John Wiley and Sons, England,
1997.

7. C. Poloni, A. Giurgevich, L. Onesti, and V. Pediroda. Hybridization of a multi-
objective genetic algorithm, a neural network and a classical optimizer for a com-
plex design problem in fluid dynamics. Computer Methods in Applied Mechanics
and Engineering, volume 186, pages 403–420, 2000.

8. D. Spicer, J. Cook, C. Poloni and P. Sen. EP20082 Frontier: Industrial Multi-
Objective Design Optimisation. In Proceedings of the 4th European Computational
Fluid Dynamics Conference (ECCOMAS 98), John Wiley and Sons, England, 1998.

9. C. M. Fonseca and P. J. Fleming. Genetic Algorithms for Multiobjective Opti-
mization: Formulation, Discussion and Generalization.

10. K. Yamamoto and O. Inoue. New evolutionary direction operator for genetic
algorithms. AIAA Journal, volume 33, number 10, pages 1990–1993, 1995.

11. Rigoni, E. 2004, Hole functions problem, ESTECO Technical Report 2004-002,
http://www.esteco.com.

12. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. 2000, A Fast and Elitist
Multi-Objective Genetic Algorithm: NSGA-II, KanGAL Report Number 2000001
In Proceedings of the Fifth International Conference on Genetic Algorithms, pages
416–423, San Mateo, California, 1993.

13. Rigoni, E. 2004, NBI-NLPQLP Scheduler, ESTECO Technical Report 2004-003,
http://www.esteco.com.

14. P. Shukla, K. Deb, S. Tiwari (2005). Comparing classical generating methods with
an evolutionary multi-objective optimization method. Proceedings of the Third
International Conference on Evolutionary Multi-Criterion Optimization (EMO-
2005). Guanajuato, Mexico. Lecture Notes on Computer Science 3410, pages 311-
325.


	NBI and MOGA-II,two complementary algorithms for Multi-Objective optimizations
	Enrico Rigoni, Silvia Poles 



